机器学习系列
文章平均质量分 94
科技与文明
数字化转型+电子商务+智能制造
展开
-
初学者指南: 使用NumPy数组进行图像处理
Numpy数组的基本使用,对图片的基本处理,可加深对数组和图片之间关系的理解,对于人工智能的机器学习,深度学习大有帮助原创 2022-11-29 17:12:07 · 4142 阅读 · 0 评论 -
最快计算Mandelbrot的Python代码
Python作为动态语言,现在越来越流行,但是在使用却未必十全十美,其中运行的性能问题,便是其中之一。当在程序中有很多for循环,并且迭代次数很多的情况下,性能问题尤其突出。当然,解决办法也有很多,比如使用Cython便是一个好的解决办法,也可以使用一些第三方的Python库,如,PyOpenCI,PyCuda,Numbia等,但相比之下使用Numbia更为简洁,本文使用Numbia,例子是绘制M...原创 2019-06-02 08:02:13 · 1622 阅读 · 4 评论 -
np.tensordot 的理解和使用
Numpy是使用最广的科学计算库,对于多维数组的操作更是在实践中用的最多,而且也是比较困惑的地方,但是用好了事半功倍,今天讲一下Tensordot的使用,这个函数在卷积神经网络的卷积中用到。数组的属性数组维度、形状、数组元素个数、元素占用字节数、数组占用空间用以下例子说明:>>> X = np.random.randint(0,9,(3,4,5))>>>...原创 2019-05-15 10:20:49 · 15817 阅读 · 9 评论 -
20个最佳人工智能和机器学习YouTube频道
不是广告,个人推荐,有兴趣了解一下。无论您拥有计算机学习经验,是否拥有计算机科学学位或仅仅是对AI的兴趣。 通过易于理解的演示和教程视频,您很快就可以立即掌握人工智能,机器学习和计算机科学的基础知识。YouTube上的机器学习教程Siraj Raval:人工智能学院是一个不断发展的学习社区,旨在为任何人提供免费的世界级人工智能教育。Arxiv Insights:Xander Steenb...翻译 2019-04-25 08:31:28 · 3221 阅读 · 1 评论 -
卷积神经网络的简单理解
文章目录1、为什么需要卷积2、整体结构3、卷积层3.1 卷积运算3.2 Padding填充3.3 步幅3.4 3维数据的卷积运算3.5 结合方块思考3.6 批处理4、池化层参考资料前面的神经网络我们使用的都是全连接网络,不管是感知机还是函数逼近,都使用的仿射(Affine)变换,今天介绍卷积神经网络(Convolutional Neural Network,CNN)。CNN被用于图像识别、语音识...原创 2019-05-05 09:15:09 · 2172 阅读 · 1 评论 -
激活函数的理解和实现-最新整理
引言学习神经网络的时候我们总是听到激活函数这个词,而且很多资料都会提到常用的激活函数,比如Sigmoid函数、tanh函数、Relu函数。那么我们就来详细了解下激活函数方方面面的知识。本文的内容包括几个部分:什么是激活函数?激活函数的用途(为什么需要激活函数)?有哪些激活函数,都有什么性质和特点?应用中如何选择合适的激活函数?如果你对以上几个问题不是很清楚,下面的内容对你是有价值的...原创 2019-04-14 16:10:58 · 3725 阅读 · 1 评论 -
用计算图理解和计算BP神经网络的梯度
摘要计算图应用非常广,例如,内存计算框架Spark的有向无环图(DAG),Neo4J图数据库、深度学习中的神经网络图,以及TensorBoard中的可视化图,都是计算图的应用场景。本文所讲的也是计算图的一个应用场景:计算神经网络的梯度,包括计算激活函数和典型神经结构(也叫卷积核)的梯度:1、用计算图分解和解决 激活函数 的导数的计算2、用计算图分解和解决 神经网络 在反向传播路径上梯度的计算...原创 2019-04-21 12:02:57 · 3413 阅读 · 2 评论 -
神经网络的数学基础:张量运算
通过上一篇的内容,我们知道了张量表示神经网络中的数据,那么数据在网络中流动必然要经过各种运算或者叫做处理,这一系列的处理就是达到最终结果的过程。可以形象把中间的变换称为神经网络的“齿轮”,或者叫做张量运算。就像二进制运算有逻辑与(AND),或(OR),异或(NOR)一样,张量运算有以下几种:逐元素运算张量点积广播张量变形1. 逐元素运算relu运算和加法(减法)都是逐元素(elem...原创 2019-04-13 15:18:30 · 4845 阅读 · 1 评论 -
深刻理解机器学习的: 目标函数,损失函数和代价函数
对于目标函数,损失函数和代价函数,重要的是理解。基本概念:在机器学习中,对于目标函数、损失函数、代价函数等不同书上有不同的定义。这里取如下定义损失函数:计算的是一个样本的误差代价函数:是整个训练集上所有样本误差的平均目标函数:代价函数 + 正则化项理解之间的差异为了方便理解,现举例说明:上面三个图的曲线函数依次为f1(x),f2(x),f3(x)f1(x),f2(x),f3(x)...原创 2019-04-16 15:58:45 · 987 阅读 · 0 评论 -
2019 最全神经网络结构图画图工具介绍,没有之一!
前言最近看到知乎上有人提问,关于神经网络结构图的问题,编辑部决定给大家做一期比较全面详细的介绍,希望对大家在这方面的空缺和疑惑有所帮助。神经网络结构图绘制工具列表名称描述推荐指数Python+Graphvizgraphviz的python版本(亲测)****PlotNeuralNet第一步生成tex文件,然后调用LaTeX命令行生成图形(亲测)****...原创 2019-04-16 12:37:00 · 29454 阅读 · 2 评论 -
了解机器学习(深度学习)的几个特点
机器学习(深度学习)跟编程范式以及处理的数据等方面根传统的编程有较大不同,需要学习或准备转型做这个领域的需要引起足够的关注。1、编程范式在经典的程序设计(即符号主义人工智能的范式)中,人们输入的是规则(即程序)和需要根据这些规则进行处理的数据,系统输出的是答案 (见下图)。利用机器学习,人们输入的是数据和从这些数据中预期得到的答案,系统输出的是规则或者叫模型。这些规则随后可应用于新的数据,...原创 2019-04-09 08:53:55 · 13720 阅读 · 1 评论 -
神经网络的数学基础:张量和梯度
阅读上一篇 深度学习的“Hello World” 今天主要讲神经网络的数学基础,涉及的数学包括线性代数、矩阵分析、微积分和数理统计等科目。主要讲清楚两个概念张量和梯度,这两个概念对于了解和掌握机器学习(深度学习)尤为重要,在介绍这两个概念之前,我们来了解一下Google的神经网络游乐园。开篇Google是人工智能的领导者,在人工智能方面的建树,无需赘述了。Google官方有一个神经网站游乐园...原创 2019-04-12 11:28:10 · 8614 阅读 · 0 评论 -
深度学习的“Hello World”
本文目的是通过深度学习的“Hello World”,向读者展示神经网络的训练过程,是用不那么技术化的文字帮你建立对神经网络的直觉。我们将避免使用数学符号,因为数学符号可能会令没有任何数学背景的人反感,而且对解释问题也不是绝对必要的。本文真正目的不是要解决什么手写识别问题,而是通过这个小小的例子引出深度学习后面你需要了解和掌握的知识技术范围。原创 2019-04-11 13:49:35 · 1555 阅读 · 0 评论