2019 最全神经网络结构图画图工具介绍,没有之一!

最近看到有人提问,关于神经网络结构图的问题,决定给大家做一个比较全面详细的介绍,希望对大家在这方面的空缺和疑惑有所帮助。

神经网络结构图绘制工具列表
名称 描述 推荐指数
Python+Graphviz graphviz的python版本(亲测) ****
PlotNeuralNet 第一步生成tex文件,然后调用LaTeX命令行生成图形(亲测) ****
NetworkX 这是个专门的复杂网络图的Python包 ****
Matplotlib’s Viznet 利用Matplotlib的Viznet ****
LaTeX tikz 绘制网络结点图的tikz库 ***
Graphviz 专业绘图软件,
### 主流 AI 绘画技术、工具与框架 AI 绘画领域近年来发展迅速,主要依赖于生成对抗网络(GANs)、变分自编码器(VAEs)以及扩散模型等核心技术。这些技术被广泛应用于图像生成、风格迁移等领域。 #### 技术概述 当前最流行的 AI 绘画技术主要包括基于 GAN 的方法和基于扩散模型的方法。其中,扩散模型因其高质量的生成效果而备受关注。扩散模型通过逐步向数据中添加噪声并学习如何逆转这一过程来生成新样本[^1]。 #### 工具介绍 以下是几种主流的 AI 绘画工具及其特点: - **InvokeAI**: 这是一款基于稳定扩散模型的创意引擎,适用于专业人士、艺术家及爱好者。它提供了友好的 Web 界面和支持 CLI 使用的功能,成为许多商业产品的重要组成部分。 - **MidJourney**: MidJourney 是一种强大的云端 AI 图像生成服务,以其快速迭代能力和多样化的艺术风格著称。用户可以通过简单的文本提示词生成复杂的艺术作品。 - **DALL·E / DALL·E 2**: OpenAI 开发的一系列多模态预训练模型,能够根据自然语言描述生成高分辨率图片。其第二代版本显著提升了细节表现力和真实感[^2]。 - **Stable Diffusion**: Stable Diffusion 是开源社区中最受欢迎的扩散模型之一,允许开发者自由定制参数以满足特定需求。它的易用性和灵活性吸引了大量使用者参与改进和发展。 #### 框架分析 对于希望深入研究或开发自己的 AI 绘画应用的研究者来说,以下几个框架值得考虑: - TensorFlow 和 PyTorch: 它们是最常用的深度学习框架,在构建复杂神经网络结构方面具有强大功能。无论是实现经典 GAN 架构还是现代扩散模型,这两个平台都能提供充分支持。 - Hugging Face Transformers Library: 虽然最初专注于 NLP 领域,但此库也包含了部分用于 CV 任务(如 CLIP)的预训练权重文件,方便研究人员探索跨模态交互的可能性。 ```python import torch from diffusers import StableDiffusionPipeline model_id = "CompVis/stable-diffusion-v1-4" device = "cuda" pipe = StableDiffusionPipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16) pipe.to(device) prompt = "a photograph of an astronaut riding a horse on mars" image = pipe(prompt).images[0] image.save("astronaut_rides_horse.png") ``` 上述代码片段展示了如何利用 `diffusers` 库加载预先训练好的 Stable Diffusion 模型,并依据给定的文字说明生成对应图画。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

科技与文明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值