ShaderToy入门教程(1) - SDF 和 Raymarching 算法

本文深入探讨了光线追踪(RayMarching)算法与符号距离函数(SDF)的结合使用,展示如何实时创建复杂的3D图形。从SDF定义3D几何形状到Ray-marching算法的实现,详细解析了光线追踪的原理与实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

许多演示场景中使用的技术之一称为 光线追踪(Ray Marching) 。该算法与一种称为 有符号距离函数 的特殊函数结合使用,可以实时创建一些非常酷的东西。这是系列教程,陆续推出,这篇涵盖以下黑体所示内容

  • 符号距离函数
  • Ray-marching算法
  • 曲面法线和光照
  • 相机变换
  • 构造实体形状(CSG)
  • 模型变换
    • 平移和旋转
    • 比例缩放
    • 非均匀缩放
  • 结论
  • 参考
困惑

ShaderToy最让初学者困惑的:看不到它显示的绘制什么图形,它是隐式的,由数学公式定义的
我们知道,raymarching和raytracing都是用于渲染3D对象的算法,无论如何渲染某个3D对象,我们首先需要构造/定义其形状。

显示的方式
一般而言,使用一系列参数化函数定义显式几何。例如,对于中心位于(x0,y0,z0)和半径r的球体:
f ( x ) = x 0 + r sin ⁡ φ    cos ⁡ θ f ( y ) = y 0 + r sin ⁡ φ    sin ⁡ θ ( 0 ≤ φ ≤ π ,    0 ≤ θ < 2 π ) f ( z ) = z 0 + r cos ⁡ φ   {\begin{aligned}f(x)&=x_{0}+r\sin \varphi \;\cos \theta \\f(y)&=y_{0}+r\sin \varphi \;\sin \theta \qquad (0\leq \varphi \leq \pi ,\;0\leq \theta <2\pi )\\f(z)&=z_{0}+r\cos \varphi \,\end{aligned}} f(x)f(y)f(z)=x0+rsin

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

科技与文明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值