jacobi迭代法_迭代法解线性方程组、Jaboci迭代法、Gauss–Seidel迭代法、松弛法

6b5a4271aff35497fb48763aa79bd179.png

适用方程组:系数矩阵为大型稀疏的方阵

引例

迭代法可以用来解方程,考虑解下面简单的方程

既然都说要用迭代法求解,就不能用正常的同除1.5求解。

利用迭代法,把方程改写为以下形式,也可以看作为 你

的交点(画出交点的话更加清晰)
,带入方程组,反复进行得到以下表格

51f99eee0095b9c71a3d4a40a1aa9df8.png

反复进行,会发现逐渐趋于解。

更一般的说,对于

这个方程组,类似构造出迭代式
为了联系起来迭代式与原方程,令
,可得
,则对于原式
,有

为得到递推式,令

改写为
递推式,即

迭代函数就是

他的雅可比矩阵

这样对于方程组的迭代问题基本形式就清晰了,还存在的问题就是这样做能逼近正确解是有条件的。

谱半径

则收敛,且
越小,收敛的越快

正确性依据

对于若

,则收敛的证明,首先要了解谱半径。

谱半径

定义:若A是n阶方阵,则有

其中

为是A的特征值。(区别于谱范数、也就是2-范数,谱范数是A的最大奇异值)

谱半径与范数相关定理

定理1

。(
A的谱半径是A的任意一种范数的下界

定理2:对于任何方阵A及任意正数

,存在某一种矩阵范数使得
成立

定理3(Gelfand定理)

推论

推论1:矩阵序列

收敛于0的充要条件是

推论2:级数

收敛于
的充要条件是

证明

回到对于问题的证明,也就是证明

由于

证明原命题成立 ,只用证明,

而根据推论1,在

的条件下,
,原命题成立。

Jacobi方法

数学公式

改写为

e35f8e529a65e078340b223f044d03a8.png

根据递推公式

,让M尽量简单,令
,可得

此递推公式收敛的充要条件是

,也就是要求G的
最大绝对值特征值要小于1。下面给出一个计算特征值的技巧。

271899f53493e6c042c4d0d9a03a8911.png

可以用

来计算出所有的特征值λ。

若可以迭代,就令

(可以是任意的数)进行迭代计算解

例题

3a1f83c2a9d067a643ff2491f67370d7.png

迭代式为

662cc9759ec83e92f105cc32db26d5d7.png

进行计算

39445e3b799bd667ed695fe4fd561d03.png

Gauss–Seidel方法

Gauss-Seidel方法是jacobi方法的升级版本。比jacobi先进的地方在于,他把新的分量立刻加入到计算中

数学公式

依然令A=D+L+U

,为了能够及时更新M,令
改写方程如下

同样针对是否可以迭代需要计算

的特征值,化简操作如下

6ef50ceff67c6f324dc2a4f7a8f13a87.png

利用最后一行的公式可以计算出所有的特征值。

例题:

29322ef7a096f0fb1c7ef0e71061b58c.png

迭代式为

bcadbfbbd39a464627991041a98767cd.png

注意对于右侧,从第二行开始已经把新的分量

加入到了计算中。

松弛法

松弛法是对Gauss-Seidel方法的进一步优化。

数学公式

其中

是松弛参数,
是通过Gauss-Seidel得到的解。当
为超松弛,当
为低松弛,
就是GS方法。通常来说取
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值