适用方程组:系数矩阵为大型稀疏的方阵
引例
迭代法可以用来解方程,考虑解下面简单的方程
既然都说要用迭代法求解,就不能用正常的同除1.5求解。
利用迭代法,把方程改写为以下形式,也可以看作为 你
与
的交点(画出交点的话更加清晰)
设
,带入方程组,反复进行得到以下表格
反复进行,会发现逐渐趋于解。
更一般的说,对于
这个方程组,类似构造出迭代式
为了联系起来迭代式与原方程,令
,可得
,则对于原式
,有
为得到递推式,令
,
改写为
递推式,即
迭代函数就是
他的雅可比矩阵
这样对于方程组的迭代问题基本形式就清晰了,还存在的问题就是这样做能逼近正确解是有条件的。
若谱半径
则收敛,且
越小,收敛的越快
正确性依据
对于若
,则收敛的证明,首先要了解谱半径。
谱半径
定义:若A是n阶方阵,则有
其中
为是A的特征值。(区别于谱范数、也就是2-范数,谱范数是A的最大奇异值)
谱半径与范数相关定理
定理1:
。(
A的谱半径是A的任意一种范数的下界)
定理2:对于任何方阵A及任意正数
,存在某一种矩阵范数使得
成立
定理3(Gelfand定理):
推论:
推论1:矩阵序列
收敛于0的充要条件是
。
推论2:级数
收敛于
的充要条件是
证明
回到对于问题的证明,也就是证明
由于
证明原命题成立 ,只用证明,
而根据推论1,在
的条件下,
,原命题成立。
Jacobi方法
数学公式:
将
改写为
。
根据递推公式
,让M尽量简单,令
,可得
此递推公式收敛的充要条件是
,也就是要求G的
最大绝对值特征值要小于1。下面给出一个计算特征值的技巧。
可以用
来计算出所有的特征值λ。
若可以迭代,就令
(可以是任意的数)进行迭代计算解
例题
迭代式为
令
进行计算
Gauss–Seidel方法
Gauss-Seidel方法是jacobi方法的升级版本。比jacobi先进的地方在于,他把新的分量立刻加入到计算中。
数学公式:
依然令A=D+L+U
,为了能够及时更新M,令
改写方程如下
同样针对是否可以迭代需要计算
的特征值,化简操作如下
利用最后一行的公式可以计算出所有的特征值。
例题:
迭代式为
注意对于右侧,从第二行开始已经把新的分量
加入到了计算中。
松弛法
松弛法是对Gauss-Seidel方法的进一步优化。
数学公式
其中
是松弛参数,
是通过Gauss-Seidel得到的解。当
为超松弛,当
为低松弛,
就是GS方法。通常来说取