
适用方程组:系数矩阵为大型稀疏的方阵
引例
迭代法可以用来解方程,考虑解下面简单的方程
利用迭代法,把方程改写为以下形式,也可以看作为 你

反复进行,会发现逐渐趋于解。
更一般的说,对于
为得到递推式,令
迭代函数就是
他的雅可比矩阵
这样对于方程组的迭代问题基本形式就清晰了,还存在的问题就是这样做能逼近正确解是有条件的。
若谱半径
正确性依据
对于若
谱半径
定义:若A是n阶方阵,则有
其中
谱半径与范数相关定理
定理1:
定理2:对于任何方阵A及任意正数
定理3(Gelfand定理):
推论:
推论1:矩阵序列
推论2:级数
证明
回到对于问题的证明,也就是证明
证明原命题成立 ,只用证明,
而根据推论1,在
Jacobi方法
数学公式:
将

根据递推公式
此递推公式收敛的充要条件是

可以用
若可以迭代,就令
例题

迭代式为

令

Gauss–Seidel方法
Gauss-Seidel方法是jacobi方法的升级版本。比jacobi先进的地方在于,他把新的分量立刻加入到计算中。
数学公式:
依然令A=D+L+U
同样针对是否可以迭代需要计算

利用最后一行的公式可以计算出所有的特征值。
例题:

迭代式为

注意对于右侧,从第二行开始已经把新的分量
松弛法
松弛法是对Gauss-Seidel方法的进一步优化。
数学公式
其中