扫码下载「CSDN程序员学院APP」,1000+技术好课免费看
APP订阅课程,领取优惠,最少立减5元 ↓↓↓

订阅后:请点击此处观看视频课程
视频教程-【零基础】Python金融分析与量化交易实战-机器学习
学习有效期:永久观看
学习时长:1573分钟
学习计划:27天
难度:中
「口碑讲师带队学习,让你的问题不过夜」

讲师姓名:唐宇迪
高校教师 / 培训机构讲师
讲师介绍:计算机博士,专注于机器学习与计算机视觉领域,深度学习领域一线实战讲师。在图像识别领域有着丰富经验,实现过包括人脸识别,物体识别,关键点检测等多种应用的新算法。 参与多个国家级计算机视觉项目,多年数据领域培训经验,丰富的教学讲解经验,出品多套机器学习与深度学习系列课程,课程生动形象,风格通俗易懂。
☛点击立即跟老师学习☚
「你将学到什么?」
购买课程后,添加小助手微信(微信号:csdnxy68)回复【唐宇迪】
进入学习群,获取唐宇迪老师答疑
Python金融分析与量化交易实战课程旨在帮助同学们快速掌握Python数据分心核心技能与交易交易系统策略部署与回测分析。全部课程内容皆以实战为主,通俗讲解数据分析常用方法与经典解决方案。主要包括三大核心模块:1.Python数据科学必备工具包实战;2.金融数据分析处理与分析实例;3.量化交易平台策略分析实战。整体风格通俗易懂,零基础即可入门,适合准备转行就业与进阶提升的同学们。
课程特色:
1、机器学习算法全面覆盖,每个算法均有配套项目实战!
2、通俗易懂,用最接地气的方式讲解复杂的算法与代码!
3、五年沉底,精选配套案例,打造最适合初学者的实战路线图!
4、机器学习教材免费领取,课程持续更新,永久有效!
「课程学习目录」
第1章:Python环境配置与基本操作 |
1.课程内容与大纲介绍 |
2.Python环境配置(数据代码下载----------》) |
3.Python库安装工具 |
4.Notebook工具使用 |
5.Python简介 |
6.Python数值运算 |
7.Python字符串操作 |
8.索引结构 |
第2章:Python核心操作 |
1.List基础结构 |
2.List核心操作 |
3.字典基础定义 |
4.字典的核心操作 |
5.Set结构 |
6.赋值机制 |
7.判断结构 |
8.循环结构 |
9.函数定义 |
10.模块与包 |
11.异常处理模块 |
12.文件操作 |
第3章:Python类与习题实例 |
1.类的基本定义 |
2.类的属性操作 |
3.时间操作 |
4.Python练习题-1 |
5.Python练习题-2 |
6.Python练习题-3 |
第4章:Python科学计算库-Numpy |
1.Numpy工具包概述 |
2.数组结构 |
3.属性与赋值操作 |
4.数据索引方法 |
5.数值计算方法 |
6.排序操作 |
7.数组形状 |
8.数组生成常用函数 |
9.随机模块 |
10.读写模块 |
第5章:Python数据分析处理库-Pandas |
1.Pandas工具包使用简介 |
2.数据信息读取与展示 |
3.索引方法 |
4.groupby函数使用方法 |
5.数值运算 |
6.merge合并操作 |
7.pivot数据透视表 |
8.时间操作 |
9.apply自定义函数 |
10.常用操作 |
11.字符串操作 |
第6章:金融数据时间序列分析 |
1.金融时间序列数据统计分析 |
2.序列变化情况分析计算 |
3.连续指标变化情况分 |
4.时间序列重采样操作 |
5.短均与长均计算实例 |
6.指标相关情况分析 |
7.回归方程与相关系数实例 |
第7章:双均线交易策略实例 |
1.金叉与死叉介绍 |
2.买点与卖点可视化分析 |
3.策略收益效果分析 |
4.均线调参实例 |
第8章:策略收益与风险评估指标解析 |
1.回测收益率指标解读 |
2.年化指标分析 |
3.最大回撤区间 |
4.夏普比率的作用 |
5.阿尔法与贝塔概述 |
第9章:量化交易与回测平台解读 |
1.量化交易概述 |
2.量化交易所需技能分析 |
3.Ricequant交易平台简介 |
第10章:Ricequant回测选股分析实战 |
1.策略任务分析 |
2.股票池筛选 |
3.策略效果演示与指标分析 |
4.定时器功能与作用 |
第11章:因子数据预处理实例 |
1.百分位去极值方法 |
2.基于百分位去极值实例 |
3.Mad法去极值演示 |
4.3Sigma方法实例 |
5.标准化处理方法 |
6.中性化处理方法通俗解释 |
7.策略任务概述 |
第12章:因子选股策略实例 |
1.股票数据获取 |
2.过滤筛选因子指标数据 |
3.因子数据预处理 |
4.股票池筛选 |
5.策略效果评估分析 |
第13章:因子分析实战 |
1.因子分析概述 |
2.Alphalens工具包介绍 |
3.获取因子指标数据 |
4.获取给定区间全部数据 |
5.数据格式转换 |
6.IC指标值计算 |
7.工具包绘图展示 |
8.因子收益率简介 |
第14章:因子打分选股实战 |
1.打分法选股策略概述 |
2.整体任务流程梳理 |
3.策略初始化与数据读取 |
4.因子打分与排序 |
5.完成选股方法 |
6.完成策略交易展示结果 |
7.策略总结与分析 |
第15章:回归分析策略 |
1.回归问题概述 |
2.误差项定义 |
3.独立同分布的意义 |
4.似然函数的作用 |
5.参数求解 |
6.梯度下降通俗解释 |
7.参数更新方法 |
8.优化参数设置 |
9.回归任务概述 |
10.特征可视化展示 |
11.构建回归方程 |
12.回归分析结果 |
第16章:聚类分析策 |
1.KMEANS算法概述 |
2.KMEANS工作流程 |
3.KMEANS迭代可视化展示 |
4.DBSCAN聚类算法 |
5.DBSCAN工作流程 |
6.DBSCAN可视化展示 |
7.聚类分析实例 |
8.统计分析所需数据准备 |
9.统计效果展示 |
第17章:拓展:fbprophet时间序列预测神器 |
1.fbprophet股价预测任务概述 |
2.时间序列分析 |
3.fbprophet时间序列预测实例 |
4.亚马逊股价趋势 |
5.突变点调参 |
第18章:拓展:基于深度学习的时间序列预测 |
1.任务目标与数据源 |
2.构建时间序列数据 |
3.训练时间序列数据预测结果 |
4.多特征预测结果 |
5.序列结果预测 |
第19章:拓展:可视化库-Matplotlib |
1.Matplotlib概述 |
2.子图与标注 |
3.风格设置 |
4.条形图 |
5.条形图细节 |
6.条形图外观 |
7.盒图绘制 |
8.盒图细节 |
9.绘图细节设置 |
10.绘图细节设置2 |
11.直方图与散点图 |
12.3D图绘制 |
13.pie图 |
14.子图布局 |
15.结合pandas与sklearn |
第20章:拓展:可视化库-Seaborn |
1.整体布局风格设置 |
2.风格细节设置 |
3.调色板 |
4.调色板颜色设置 |
5.单变量分析绘图 |
6.回归分析绘图 |
7.多变量分析绘图 |
8.分类属性绘图 |
9.Facetgrid使用方法 |
10.Facetgrid绘制多变量 |
11.热度图绘制 |
12.Python练习题-4 |
「7项超值权益,保障学习质量」
- 大咖讲解
技术专家系统讲解传授编程思路与实战。
- 答疑服务
专属社群随时沟通与讲师答疑,扫清学习障碍,自学编程不再难。
- 课程资料+课件
超实用资料,覆盖核心知识,关键编程技能,方便练习巩固。(部分讲师考虑到版权问题,暂未上传附件,敬请谅解)
- 常用开发实战
企业常见开发实战案例,带你掌握Python在工作中的不同运用场景。
- 大牛技术大会视频
2019Python开发者大会视频免费观看,送你一个近距离感受互联网大佬的机会。
- APP+PC随时随地学习
满足不同场景,开发编程语言系统学习需求,不受空间、地域限制。
「什么样的技术人适合学习?」
- 想进入互联网技术行业,但是面对多门编程语言不知如何选择,0基础的你
- 掌握开发、编程技术单一、冷门,迫切希望能够转型的你
- 想进入大厂,但是编程经验不够丰富,没有竞争力,程序员找工作难。
「悉心打造精品好课,27天学到大牛3年项目经验」
【完善的技术体系】
技术成长循序渐进,帮助用户轻松掌握
掌握机器学习知识,扎实编码能力
【清晰的课程脉络】
浓缩大牛多年经验,全方位构建出系统化的技术知识脉络,同时注重实战操作。
【仿佛在大厂实习般的课程设计】
课程内容全面提升技术能力,系统学习大厂技术方法论,可复用在日后工作中。
「你可以收获什么?」
熟练使用Python数据分析必备工具包
熟练对金融数据进行分析与处理操作
熟练使用量化交易平台
熟练完成策略并进行回测分析