诸位,本公众号已经形成包括“样本量估计”、“医学研究进展”、“论文的统计表达方法”、“统计视频”(R、医学统计学)、“科研工具合集”等若干系列,有兴趣请点击学习。现在“如何分析真实世界研究数据”粉墨登场了!
首篇篇幅较长,并且还是充满了统计的思维,如果要学习,需要耐心,本人写得不对或者让您不懂地方可以留言,请见谅!
一、RCT和RWS的基本统计学方法
随机对照试验(RCT)是临床研究常见的一种方法,它将研究对象随机分为2组,一组是干预组(Treatment),另一组是对照组(Control),对干预组施加干预措施,根据两组产生的临床结局(Outcome),通过差异性统计学分析方法(包括t、F、卡方、Fisher、秩和等),比较两组结局,看其均数、率、构成比是否存在着统计学差异。
由于RCT研究随机分组,各组基本特征均衡可比,其差异性统计学结果,即可说明干预手段具有效果。换言之,干预变量与结局变量存在着因果关联。
比如案例1:
这是一项随机对照研究,比较阿司匹林与华法林预防非瓣膜性房颤患者发生血栓栓塞的有效性和安全性,该研究结局是主要终点事件为缺血性脑卒中和死亡,为二分类的结果。该研究的结果如下表。显然,该论文主要结局卡方检验P<0.05,即可以证明华林法可以预防脑卒中发生和死亡。
真实世界研究(RWS)则不然,它研究对象分组可能不随机,而观察性研究分组不由研究对象决定,因此其治疗组(暴露组)和对照组(非暴露组)基本特征可能截然不同。组间差异性,同样可采用基本统计学方法进行分析研究,但其结论只能说各组存在着差异,无法证明处理(暴露)因素与结局存在着因果关联。
比如案例2:
这是一项回顾性队列研究,所有180病例为医院手足口病的住院患者。按患者是否应用中药治疗分为常规治疗组(对照组)与中药治疗组(治疗组)。比较中、西医治疗的效果。结果方面,两组患者的有效情况采用卡方检验,差异有统计学意义(P&