1.直线:直线是几何中不加定义的基本概念,直线的两大特征是“直”和“向两方无限延伸”。
2.直线的性质:经过两点有一条直线,并且只有一条直线,直线的这条性质是以公理的形式给出的,可简述为:过两点有且只有一条直线,两直线相交,只有一个交点。
3.射线:
(1)射线的定义:直线上一点和它们的一旁的部分叫做射线。
(2)射线的特征:“向一方无限延伸,它有一个端点”。
4.线段:
(1)线段的定义:直线上两点和它之间的部分叫做线段,这两点叫做线段的端点。
(2)线段的性质(公理):所有连接两点的线中,线段最短。
5.线段的中点:
(1)定义:如图1-1中,点B把线段AC分成两条相等的线段,点B叫做线段AC的中点。
(2)表示法:
∵AB=BC,
∴点 B为 AC的中点。
或∵ AB=1/2 AC,
∴点 B为AC的中点。
1.角的两种定义
定义一:有公共端点的两条射线所组成的图形叫做角。要弄清定义中的两个重点:
①角是由两条射线组成的图形;
②这两条射线必须有一个公共端点。
定义二:一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。在起始位置的射线与终止位置的射线就形成了一个角。
2.角平分线定义:一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。有三种表示法:如图1-2:
(1)∠AOC=∠BOC。
(2)∠AOB=2∠AOC= 2∠COB。
(3)∠AOC=∠COB=1/2 ∠AOB。
3.角的度量:度量角的大小,可用“度”作为度量单位。把一个圆周分成360等份,每一份叫做一度的角。1度=60分;1分=60秒。
4.角的分类
(1)锐角:小于直角的角叫做锐角。
(2)直角:平角的一半叫做直角。
(3)钝角:大于直角而小于平角的角。
(4)平角:把一条射线绕着它的端点顺着一个方向旋转,当终止位置和起始位置成一直线时,所成的角叫做平角。
(5)周角:把一条射线绕着它的端点顺着一个方向旋转,当终边和始边重合时,所成的角叫做周角。
(6)周角、平角、直角的关系是:l周角=2平角=4直角=360°。
5.相关的角
(1)对顶角:一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。
(2)互为补角:如果两个角的和是一个平角,这两个角互为补角。
(3)互为余角:如果两个角的和是一个直角,这两个角互为余角。
(4)邻补角:有公共顶点,一条公共边,另两条边互为反向延长线的两个角互为邻补角。
注意:互余、互补是指两个角的数量关系,与两个角的位置无关,而互为邻补角则要求两个角有特殊的位置关系。
6.角的性质
(1)对顶角相等。
(2)同角或等角的余角相等。
(3)同角或等角的补角相等。
1.斜线:两条直线相交不成直角时,其中一条直线叫做另一条直线的斜线。它们的交点叫做斜足。
2.两条直线互相垂直:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。
3.垂线:当两条直线互相垂直时,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
4.垂线的性质
(1)过一点有且只有一条直线与己知直线垂直。
(2)直线外一点与直线上各点连接的所有线段中,垂线段最短。简单说:垂线段最短。
1.定义:在同一平面内,不相交的两条直线叫做平行线。
2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
3.平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
说明:也可以说两条射线或两条线段平行,这实际上是指它们所在的直线平行。
4.平行线的判定
(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补,两直线平行。
5.平行线的性质
(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
说明:要证明两条直线平行,用判定公理(或定理)在已知条件中有两条直线平行时,则应用性质定理。
6.如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补。
注意:当角的两边平行且方向相同(或相反)时,这两个角相等。当角的两边平行且一边方向相同另一方向相反时,这两个角互补。
1.三角形
由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫三角形的边;相邻两边的公共端点叫三角形的顶点;相邻两边所组成的角叫三角形的内角,简称三角形的角。
2.三角形的角平分线
顶点与内角平分线和对边交线间的距离。
3.三角形的中线
顶点到对边中点间的距离。
4.三角形的高
顶点到对边的距离。
注意:三角形的中线和角平分线都在三角形内,而高线不一定在三角形内。
1.三角形的三边关系
(1)有关概念:三角形三边都不相等,叫不等边三角形;有两条边相等的叫等腰三角形;三边都相等的则叫等边三角形。等腰三角形中,相等的两条边叫腰,另一边叫底边,腰和底边的夹角叫底角,两腰的夹角叫项角。
(2)分类
用集合表示如下图: (3)三边关系定理及推论 三角形三边关系定理:三角形的两边之和大于第三边。 推论:三角形两边的差小于第三边。 注意:不符合定理的三条线段,不能组成三角形的三边。 例如,三条线段长分别为5,6,12,因为5+6<12,所以这三条线段不能作为三角形的三边。 2.三角形的内角和 定理:三角形三个内角的和等于180°。 由定理可知,三角形的两个角已知,那么第三角可以由定理求得。如,已知△ABC的两个角为∠A=90°,∠B=40°,则∠C=180°-90°-40°=50°。 由定理可以知道,三角形的三个内角中,只可能有一个内角是直角或钝角。 推论1:直角三角形的两个锐角互余。 三角形按角分类: 用集合表示如下图: 外角:三角形一边与另一边的延长线组成的角,叫三角形的外角。 推论2:三角形的一个外角等于和它不相邻的两个内角的和。 推论3:三角形的一个外角大于任何一个和它不相邻的内角。1.全等三角形的概念
能够完全重合的两个图形叫全等图形。两个全等三角形重合时,互相重合的顶点叫对应顶点,互相重合的边叫对应边,互相重合的角叫对应角。全等用符号“≌”表示。△ABC≌△A´B´C´表示 A和 A´,B和B´,C和C´是对应点。
2.全等三角形的性质
(1)全等三角形的对应边相等。
(2)全等三角形的对应角相等。
3.全等三角形的判定
(1)边角边公理:有两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”)。
注意:一定要是两边夹角,而不能是边边角。
(2)角边角公理:有两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”)。
(3)推论:有两角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)。
(4)边边边公理:有三边对应相等的两个三角形全等(可以简写成“边边边”或“SSS”)。
由边边边公理可知三角形的重要性质:三角形的稳定性。
注意:“边边角”或“角角角”都不能保证两个三角形全等。
(5)直角三角形全等的判定:斜边、直角边公理:有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)。
1.性质定理及推论
等腰三角形的性质定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,即:等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合。
推论2:等边三角形的各角都相等,并且每一个角都等于60°。
例如:等腰三角形底边中线上的任一点到两腰的距离相等,因为等腰三角形底边中线就是顶角的角平分线,而角平分线上的点到角的两边距离相等。
2.判定定理及推论
等腰三角形的判定定理:如果一个三角形有两个角相等,那这两个角所对的两条边也相等(简写成“等角对等边”)。
推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角是60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于3O°,那么它所对的直角边等于斜边的一半。
1.勾股定理:直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。
2.勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形。
限定用圆规和没有刻度的直尺来画图,称为尺规作图。最基本、最常用的尺规作图通常称为基本作图,例如做一条线段等于己知线段。
1.作一个角等于已知角:作法是使三角形全等(SSS),从而得到对应角相等。
2.平分已知角:作法仍是使三角形全等(SSS)。从而得到对应角相等。
3.经过一点作已知直线的垂线:
(1)若点在已知直线上,可看作是平分已知角平角;
(2)若点在已知直线外,可用类似平分已知角的方法去做:已知点 C为圆心,适当长为半径作弧交已知真线于A,B两点,再以A,B为圆心,用相同的长为半径分别作弧交于D点,连接CD即为所求垂线。
4.作线段的垂直平分线:线段的垂直平分线也叫中垂线,做法的实质仍是全等三角形(SSS),也可以用这个方法作线段的中点。
1.假设在直角三角形ABC中,∠C是直角,那么:
(1)正弦:把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA=a/c。
(2)余弦:把锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA=b/c。
(3)正切:把锐角A的对边与邻边的比叫做∠A的正切,记作tanA=a/b 。
(4)余切:把锐角A的邻边与对边的比叫做∠A的余切,记作cotA=b/a。
说明:由定义可以看出tanA·cotA=1(或写成tanA=1/cotA)
2.锐角三角函数:锐角A的正弦、余弦、正切和余切都叫做∠A的锐角三角函数。
说明:锐角三角函数都不能取负值:0< sinA<1;0<cosA<1。
3.锐角的正弦和余弦之间的关系:任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值。
即sinA=cos(90°-A)=cosB;
cosA=sin(90°-A)=sinB。
4.锐角的正切和余切之间的关系:任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值。
即tanA=cot(90°-A)=cotB;
cotA=tan(90°-A)= tanB。
说明:式中的90°-A = B 。
5.三角函数值的变化规律
(1)当角度在0°到 90°之间变化时,正弦值(正切值)随着角度的增大(或减小)而增大(或减小)。
(2)当角度在0°到90°之间变化时,余弦值(余切值)随着角度的增大(或减小)而减小(或增大)。
6.同角三角函数关系公式、
(1)sin2A+cos2B=1;
(2)tanA=1/cotA;
(3)tanA=sinA/cosA。
7.一些特殊角的三角函数值
1.定义:由直角三角形中,除直角外的已知元素,求出所有未知元素的过程叫做解直角三角形。
2.关系:若在直角三角形ABC中,∠C=90°,那么A,B,C,a,b,c中除∠C=90°外,其余5个元素之间有如下关系:
(l)a2+b2=c2;
(2)∠A十∠B=90°;
(3)sinA=a/c;cosA=b/c;tanA=a/b;cotA=b/a。
所以,只要知道其中的2个元素(至少有一个是边),就可以求出其余3个未知数。
—End—