python ndimage.gaussian_Python ndimage.gaussian_gradient_magnitude方法代碼示例

这篇博客介绍了如何在MRI处理中应用Python的scipy.ndimage.gaussian_gradient_magnitude函数。如果dipy库不可用,则会使用fsl.BET作为替代方法。工作流程包括了数据增强、信噪比估计、去噪、梯度计算和阈值处理,以生成头盔掩模。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

# 需要導入模塊: from scipy import ndimage [as 別名]

# 或者: from scipy.ndimage import gaussian_gradient_magnitude [as 別名]

def headmsk_wf(name='HeadMaskWorkflow', use_bet=True):

"""

Computes a head mask as in [Mortamet2009]_.

.. workflow::

from mriqc.workflows.anatomical import headmsk_wf

wf = headmsk_wf()

"""

has_dipy = False

try:

from dipy.denoise import nlmeans

has_dipy = True

except ImportError:

pass

workflow = pe.Workflow(name=name)

inputnode = pe.Node(niu.IdentityInterface(fields=['in_file', 'in_segm']),

name='inputnode')

outputnode = pe.Node(niu.IdentityInterface(fields=['out_file']), name='outputnode')

if use_bet or not has_dipy:

# Alternative for when dipy is not installed

bet = pe.Node(fsl.BET(surfaces=True), name='fsl_bet')

workflow.connect([

(inputnode, bet, [('in_file', 'in_file')]),

(bet, outputnode, [('outskin_mask_file', 'out_file')])

])

else:

from niworkflows.nipype.interfaces.dipy import Denoise

enhance = pe.Node(niu.Function(

input_names=['in_file'], output_names=['out_file'], function=_enhance), name='Enhance')

estsnr = pe.Node(niu.Function(

input_names=['in_file', 'seg_file'], output_names=['out_snr'],

function=_estimate_snr), name='EstimateSNR')

denoise = pe.Node(Denoise(), name='Denoise')

gradient = pe.Node(niu.Function(

input_names=['in_file', 'snr'], output_names=['out_file'], function=image_gradient), name='Grad')

thresh = pe.Node(niu.Function(

input_names=['in_file', 'in_segm'], output_names=['out_file'], function=gradient_threshold),

name='GradientThreshold')

workflow.connect([

(inputnode, estsnr, [('in_file', 'in_file'),

('in_segm', 'seg_file')]),

(estsnr, denoise, [('out_snr', 'snr')]),

(inputnode, enhance, [('in_file', 'in_file')]),

(enhance, denoise, [('out_file', 'in_file')]),

(estsnr, gradient, [('out_snr', 'snr')]),

(denoise, gradient, [('out_file', 'in_file')]),

(inputnode, thresh, [('in_segm', 'in_segm')]),

(gradient, thresh, [('out_file', 'in_file')]),

(thresh, outputnode, [('out_file', 'out_file')])

])

return workflow

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值