
苏教版四年级数学上册电子课本
第一单元、升和毫升
第1课、升和毫升(1)
第2课、升和毫升(2)
第3课、升和毫升(3)
第二单元、两、三位数除以两位数
第4课、除数是整十数的口算和笔算
第5课、三位数除以整十数的估算和笔算
第6课、除数是整十数除法应用
2.4《用“四舍五入”法试商》
同步练习
1.填一填。
(1)计算866÷79时,可以把除数看作( )来试商,商是( )位数。
(2)336÷48,计算时可以把除数看作( )来试商,商应该写在( )位上。
2.列竖式计算。
384÷21 298÷42 378÷23 289÷17
3某超市8月分销售了899千克的西瓜,平均每天销售多少千克西瓜?
参考答案
1.(1)80 两 (2)50 个
2.18……6 7……4 16……10 17
3.899÷31=29(千克)答:平均每天销售29千克西瓜。
教学设计
教材第12~14页的内容。
1.在具体情境中,经历两、三位数除以两位数试商方法的探索过程,会运用“四舍五入”法进行试商,并能正确地笔算除数是两位数(商是一位数)的除法。
2.在探索计算方法和解决问题的过程中,感受数学与生活的联系,增强自主探索的意识,提高合作交流的能力,增强应用数学的意识,获得积极的数学学习情感。
重点:掌握两、三位数(非整百整十数)除以两位数(非整十数)的笔算。
难点:运用“四舍五入”法试商。
课件、配套光盘。
1.说一说下面的数最接近哪个整数。
21≈39≈57≈64≈
23≈ 31≈ 96≈ 48≈
2.计算并验算。(计算前先估计结果)
96÷1995÷3175÷24
432÷64 390÷44 810÷79
3.根据上题,讨论一下如何估算最合理。
1.例题讲解。
(1)出示教材第12页例3,教师拿一本书作教具。
老师手里的书共96页,现在老师决定每天看30页。你认为我能看几天,还剩多少页?
①让学生理解题意后列式计算,并订正结果。
96÷30=3(天)……6(页)
②如果老师决定每天看32页,你认为老师能看几天?还有没有余下的页数?
请同学们先列出算式,不要解答。
96÷32
③学生列出式子后,引导学生观察除数和刚才的除数有什么不同,引出课题。讨论可以把32看作几十来试商。32接近30,把32看作30来试商,这是“四舍”法试商。
验算一下,看看算得对不对。
④教学教材第12页“试一试”。
39接近40,把39看作40来试商,这是“五入”法试商。
(2)出示课件。
平均每个书架每层放多少本书?
①已知条件:两个书架,每个书架4层,一共放了224本书。
②解题思路:可以先算平均每个书架放了多少本书,也可以先算一共有多少层。
方法一:两个书架,一共224本书,则每个书架放224÷2=112(本);每个书架4层,一共放112本书,则每层放112÷4=28(本)。列综合算式:224÷2÷4=28(本)
方法二:两个书架,每个4层,则两个书架共4×2=8(层);8层,一共224本书,则每层放224÷8=28(本)。
③检验:想一想,这题可以怎样检验?
引导学生用“四舍五入”法试商,题中除数23可看作20,38可看作40,41可看作40,57可看作60。
(2)出示教材第14页练一练。先让同桌间讨论,然后让学生在练习本上完成。
168÷4÷3=14(人)
2.5《连除的实际问题》
同步练习
1.小华、小芳和小英6天一共写了360个毛笔字,平均每人每天写多少个?
(1)可以先计算出平均每天3人写了多少个毛笔字,可列式:( ),再计算平均每天写多少个,列式为( )。
(2)也可以先计算出平均每人6天写多少个毛笔字,列式:( ),再计算平均每天写多少个,列式为( )。
2.把问题和相对应的算式连起来。
每盒有20个面包,明明买了4盒,共花了240元。
每盒面包多少元? 20×4
每个面包多少钱? 240÷4
4盒面包一共有多少个? 240÷4÷20
3.小红买了两盒饼干,一共重1千克,每盒有25块饼干,每块饼干重多少克?
参考答案
教学设计
教材第15~17页的内容。
1.巩固笔算两、三位数除以两位数的试商方法,熟练掌握试商的基本方法,提高学生试商的水平。
2.在试商的基础上让学生学会基本的计算方法。
3.联系生活实际,综合不同内容的知识,让学生解决简单的实际问题。
重点:熟练掌握两、三位数除以两位数的试商方法。
难点:进一步提高学生的试商水平,以试商为基础解决实际问题。
口算卡、课件、配套光盘。
用竖式计算。
1.基础练习。
(1)出示练习三第1题,指名让学生在黑板上演示计算过程,然后集体订正,让学生口述验算过程。
(2)出示练习三第2题。
一部儿童电视剧共要播放288分,每天从17:00播放至17:32,多少天可以播放完?
分析:电视剧每天播放的时间为17:00~17:32,共32分。
电视剧总长为288分,所以将整部电视剧播放完要用288÷32=9(天),在计算288÷32时,引导学生试商,可以把32看作30,用9试商。
(3)出示练习三第3题,指名让学生依次板演三位阿姨每天编织中国结的数量。
比较两个式子,可以发现被除数都是99,除数分别为33和38。在试商时,可以把33看作30,把38看作40,试商就变得简单易行了。以下三组式子也是相同的情况,引导学生仔细体会“四舍五入”法试商的算理,遇到非整十整百数的除法,学生试商时就可以做到游刃有余了。
(5)出示练习三第5题,让学生先说说各题的商是几位数,再计算。
判断商是几位数:笔算除法时,能够正确判断商是几位数对保证计算正确是很重要的。因为如果先确定商是几位数就能防止把商写错位置。提问:怎样能很快判断出商是几位数?商的位数与被除数位数有什么关系?(除数是两位数的除法,如果被除数的前两位够除,则商的位数等于被除数的位数减1;如果被除数的前两位不够除,则商的位数等于被除数的位数减2)
如:
(6)出示练习三第6题,与学生一起分析应用题中的数量关系,每填一个空格,就是用一个数量关系式解决一个实际问题。接着,让学生独立解决问题。最后让学生交流解决问题的方法和结果。这样,不仅能使学生熟悉有关术语,理解和掌握数量关系式,还能使学生感知每种数量关系中只要知道其中的两个量,就可以求得另一个未知量,从而加深对每组数量中三个量之间关系的认识。
(7)出示练习三第7题,分步解决问题,首先计算剩下的花共有多少盆:160-28=132(盆);再计算这些花要平均分给22个班,每班分得几盆:132÷22=6(盆)。
引导学生阅读其他的问题,然后思考怎样解决问题,养成勤于练习的习惯。
2.总结规律。
教学时,应充分利用学生已有的知识和经验,放手让学生通过计算、观察和比较等活动去发现规律。同时,注意发挥教师的引导作用。
2.6《试商后需要调商的笔算除法(1)
同步练习
1. 填空。
(1)一个数除以43,把43看作( )来试商,发现乘积大于被除数,此时,要把商调( )。
(2)4□3÷53,要使商是9,□里可能填( );要使商是8,□里可能填( )。如果是7呢?□里可能填( )。
2.列竖式计算。
126÷14= 272÷34= 407÷82= 802÷12=
3.小红23天看完一本161页的课外书,她平均每天看几页?
参考答案
1.(1)40 小
(2)8、9 3、4、5、6 0、1、2
2.9 8 4……79 66……10
3.161÷23=7(页)答:她平均每天看7页。
教学设计
两、三位数除以两位数(可用“四舍”法、“五入”法试商并调商)
教材第18~19页的内容。
1.进一步提高学生计算两、三位数除以两位数时试商的能力,掌握初商后需要调商的试商方法。
2.进一步提高学生对初商调整的判断能力,逐步形成必要的技能。
3.运用有关除法计算解决简单实际问题。
4.更好地理解除法的笔算方法,提高推理能力,激发学生学习数学的兴趣。
重点:掌握除数是两位数的除法中试商时的调商(“四舍”法、“五入”法试商)。
难点:运用有关除法计算解决简单实际问题。
课件、配套光盘。
1.口算。
127÷41=907÷49=292÷28=
2.让学生口答这组题的试商结果,并说说自己是怎样想的。然后教师总结试商的方法。
1.出示教材第18页例5。
(1)刚才计算的几个小题除数都是接近整十数的数,41可以看作40,49可以看作50,28可以看作30。在计算过程中,只要试一次商就可以得到准确的得数。下面看一看这道例题。(教师出示例题)
四年级一班有34人,一共借书272本。四年级一班平均每人借书多少本?
师:请大家根据题意列出算式,272÷34。
师:同学们看一下这个式子中的除数,该把它看作多少来试商呢?
学生回答后,教师板书,与学生一起试商并发现问题。
师:把34看作30试商,9乘34得306,272比306小,怎么办?(把商调小,用8来试商)
让学生口算,教师板演。
(2)前边我们一起学了除数不接近整十数且个位数小于5时用“四舍”法试商及调商的方法,有另一种情况,除数是不接近整十的数,它的个位数大于5,如16、17、26、36,如果用“五入”法试商,有时商的数会偏小,需要调大后再试,直到得到准确的得数。下面用这种方法试着分析解答教材第19页例6:
四年级二班有36人,一共借书252本。四年级二班平均每人借书多少本?
师:同样是一道求平均数的实际应用题,请大家根据题意列出算式,252÷36。
师:如果把除数36看作40,口算可知应用6试商,大家讨论一下商6可以吗?为什么?(教师用6作商进行板演)
师:请大家比较前面两道例题计算中的相同点和不同点,然后大家交流一下。
2.小结。
在除数是两位数的除法中,当除数十位上的数较小,个位上又不接近整十数,如14、24、33,如果用“四舍”法把除数看作整十数来试商,商偏大,需要把商调小后再试,直到得出正确的得数。同理,如果除数是15、25、35这样的数,如果用“五入”法把除数看作整十数来试商,商偏小,需要把商调大后再试,直到得出正确结果。
3.课堂演练。
教材第18、19页练一练。调商的基本练习,用于巩固调商的方法。练习题给出首次试商的情况,让学生根据试商情况,说一说进一步如何调商。练习时,可以让学生交流一下教材首次试商的理由,然后根据每个小题具体调商并计算结果。
2.7《试商后需要调商的笔算除法(2)》
同步练习
1. 填空。
(1) 试商时,余数比除数大,应该把商调( )。
=10……32,除数最小是(),这时被除数是()。
2.列竖式计算。
468÷78= 472÷59= 351÷39= 126÷18=
3.王阿姨10月份工作了28天,做了252个手工布偶,平均每天做多少个手工布偶?
参考答案
1.(1)大
(2)33 362
2.6 8 9 7
3.252÷28=9(个)答:她平均每天做9个手工布偶。
教学设计
1.通过练习进一步掌握算法,形成技能,达到会算和算对的要求。
2.进一步巩固计算方法,促进学生养成细致和认真的习惯。
3.提高学生解决实际问题的能力,培养良好的思维习惯。
重点:巩固计算方法,形成技能。
难点:提高学生解决实际问题的能力。
课件、配套光盘。
在前面的几节课,大家一起学习了两、三位数除以两位数的计算方法,请大家先回忆一下所学过的知识点,然后一起完成下面的练习题。
1.基础练习。
出示练习四第1题,算一算,比一比。指名让学生板演,让学生说说上下两题有什么不同之处。以第一组为例稍作讲解。
92÷23=4,商为整数,所以92可以被23整除;90比92小2,90不能被23整除,且商比4小,故用3试商,余数为21。
出示练习四第10题,三位数除以两位数的笔算及验算。出示第一个小题,指名让学生板演,计算并验算,集体订正。
商=被除数÷除数 被除数=商×除数
出示练习四第11题,三位数除以两位数的估算及笔算。先让学生估计书中各题的商是几,再计算。交流一下如何试商和调商。
出示练习四第13题,实际应用题。教师可根据题意将题中的数量关系列出一个表格,然后让学生计算,把得数依次填入表中。
引出计算公式:路程=速度×时间 时间=路程÷速度 速度=路程÷时间
请你想一想,你还能提出用除法计算的其他问题吗?
出示练习四第15题,估计商的位数。以前两个小题为例,讲解三位数除以两位数时商是几位数的估计方法。
出示练习四第16题,估计商的最高位可能是几。与上题方法类似,教师可出示两个小题作详解,让学生交流计算方法。
出示练习四第19题,实际应用问题。分析题意,要想求出养鸡的只数是鸭的几倍,必须先求出一共养鸡多少只。由题中给出的条件可知,王大伯家养公鸡185只,母鸡229只,所以王大伯家一共养鸡185+229=414(只)。
王大伯家养鸭46只,求养鸡的只数是鸭的几倍:414÷46=9。
2.练习小结。
计算针对学生在练习过程中易出现的问题,教师进行简单的小结,使学生在计算中能够更正确地掌握计算方法。
3.课后练习。
将练习四的其他各题作为练习,留给学生在课后完成。
2.8《商不变的规律》
同步练习
参考答案
1.(1)不变
(2)除以2
(3)除以3
2. 8 40 80
180 36 18
3.18×6=108
教学设计
商不变规律的认识及应用
教材第23~24页的内容。
1.掌握被除数、除数和商之间的变化规律,能用简洁的语言表述三者间的变化规律。
2.用商不变的规律解决实际问题。
3.通过探索规律,培养认真观察的能力和语言表达的能力。
重点:能正确运用商不变规律进行简便计算。
难点:总结探索商不变规律的过程,培养探究和解决问题的能力。
课件,配套光盘。
1.口算。
6÷3= 8÷4= 15÷5=
60÷30= 80÷40= 150÷50=
2.算一算,比一比。
36÷18= 72÷36= 45÷15=
360÷180= 720÷360= 450÷150=
3.让学生对比上面两题的结果和算式,看看有什么发现。
1.例题讲解。
(1)导入中的算式题,答案都是一样的。但是,算式本身却存在很大的差别。想一想,这是为什么呢?带着疑问,我们来看教材第23页例题7。
先按要求算一算、填一填,再比较算出的结果。
被除数 | 除数 | 除法算式 | 商 |
100 | 20 | 100÷20 | 5 |
100×2 | 20×2 | 200÷40 | |
100×4 | 20×4 | ||
100÷2 | 20÷2 | ||
100÷4 | 20÷4 |
教师:请同学们在草稿纸上,先完成表格,然后同桌之间进行交流讨论。看一看,想一想,被除数和除数是怎样变化的?商有没有变化?有什么发现呢?
学生汇报交流结果。
观察表格,我们发现被除数和除数同时乘2或乘4,商不变。被除数和除数同时除以2或除以4,商不变。因此我们说被除数和除数同时乘或除以一个相同的数,商不变。因为0不能作除数,所以0除外。
师:好的,回答得非常正确!把刚才的发现,用一句话总结就是:
教师总结:被除数和除数同时乘或除以一个相同的数(0除外),商不变。
(2)根据前面的总结,我们再看下面的题目。(出示课件)
师:先看第一个问题,如果买队鼓,可以买多少个?
生:已知队鼓50元一个,一共有900元钱,问可以买多少个,用除法计算,列式为900÷50。
师:好的,根据商不变的规律,这个算式有没有简算的方法呢?
生:有,被除数和除数同时除以10。
教师板书:900÷50=(900÷10)÷(50÷10)=90÷5
师:相应地,在竖式计算的过程中,我们是不是也可以简化呢?
学生讨论,教师板书。
900÷50=18(个)
师:好的,再看第二个问题,如果买队号,可以买多少把,还剩多少元?同学们试着完成一下,要注意验算。
指名板演,教师巡视,指导个别有困难的学生。
900÷40=22(个)……20(元)
2.例题小结。
用简便方法计算被除数和除数末尾有0的有余数除法时,被除数和除数末尾同时划去了几个0,就在余数末尾添上几个0。
3.课堂演练。
(1)根据240÷60=4,直接写出下列各式商,你发现了什么?
2400÷600=480÷120=1200÷300=
120÷30= 24÷6= 48÷12=
最后结果都等于4,再次证明了商不变的规律。
(2)每把椅子的售价是30元,小明的爸爸带了1200元,可以买多少把椅子?
1200÷30=40(把)
答:可以买40把。
2.9《商不变的规律的应用》
同步练习
1. 直接写出得数。
160÷40= 280÷40= 560÷70=
720÷40= 230÷30= 490÷40=
2.列竖式计算,并验算。
400÷80 650÷40 670÷30
3.养鸡场有720只母鸡,有60只公鸡,养殖场母鸡的数量是公鸡的多少倍?
参考答案
1.4 7 8 18 7……20 12……10
2.50 16……10 22……10
3.720÷60=12答:养殖场母鸡的数量是公鸡的12倍。
教学设计
教材第25~26页的内容。
1.巩固商不变规律的认识及应用,加深理解并熟练掌握商不变的规律。
2.灵活运用商不变规律进行简便计算,提高解决问题的能力。
3.联系生活实际,综合解决两、三位数除以两位数的实际问题。
重点:理解并掌握商不变的规律。
难点:明晰算理,运用商不变的规律进行简便计算。
课件,配套光盘。
根据每列中第1题的商,写出下面几题的商。
24÷8=3 49÷7=7 18÷2=9
240÷80= 490÷7= 180÷2=
2400÷80= 4900÷70= 1800÷20=
2400÷800= 4900÷700= 1800÷200=
1.基础练习。
(1)出示练习五第1题。指名学生根据每组第1题的商,口述答案。
(2)出示练习五第2题。口算下面各题,并说说是怎样算的。
(3)出示练习五第3题。
分析:根据商不变的规律,被除数和除数末尾同时含有1个0,就可以同时除以10,可以直接说出下面各题的得数。
(4)出示练习五第4题。
分析:第一组已知被除数和商,求除数。由“被除数÷除数=商”可知,“被除数÷商=除数”。24÷4=6,120÷4=30,240÷4=60。
另外,观察算式可知,四个除式,商都是4,各被除数存在一定的倍数关系。根据商不变规律,要使商不变,被除数12乘或除以几(0除外),除数也要乘或除以一个相同的数。
让同学根据上面的讲解,独立完成第二组除式。
(5)出示练习五第5题。
分析:根据总价和数量,求出各个单价,再比较大小,先用除法计算。指名三位同学板演,然后集体订正。
(6)出示练习五第6题。
教师:请同学们在教材上完成填空,同桌之间进行交流讨论。看一看,想一想:被除数和除数是怎样变化的?商有没有变化?有什么发现呢?
(7)出示练习五第7题。
分析:用简便方法计算被除数和除数末尾有0的有余数除法时,被除数和除数末尾同时划去几个0,就在余数末尾添上几个0。第一个竖式中,同时去掉了一个0,因此余数应是20;第二个竖式中,同时去掉了两个0,因此余数应是200。
2.练习小结。
针对学生在练习中出现的问题,教师要及时指正和总结,并对可能犯的错误,要有预见地指出。使学生在今天的计算中,能更正确地掌握方法。
3.课后练习。
将练习五的其他各题作为练习,留给学生在课下完成。
2.10《简单的周期》
同步练习
参考答案
答:2019年国庆节是星期二。
3.77÷5=15(组)……2(颗)是白色。
68÷5=13(组)……3(颗)是白色。
100÷5=20(组)是黑色。
答:第77颗是白色,第68颗是白色,第100颗是黑色。
教学设计
简单的周期
教材第30~31页的内容。
1.在活动中探索并发现一些简单周期现象中的排列规律,能正确计算按照周期规律排列的物体或图形的数量。
2.在探索规律的过程中体会数学与日常生活的联系,获得成功的体验,增强学好数学的信心。
重点:探索并发现一些简单的周期现象中的排列规律。
难点:能在日常生活中运用简单的周期规律,计算或预见事物的发展。
课件。
在重大的国庆节日期间,我们经常能见到各种摆放整齐的盆花。有的甚至能根据盆花的颜色,摆出各种不同的汉字。同学们想一想,为什么同样的盆花,能摆出这么多不同的字呢?
1.出示教材第30页情景图。
(1)图中盆花、彩灯和彩旗的排列有什么共同特点?
(2)你能说说盆花是按照怎样的规律排列的吗?按盆花的排列规律,第19盆花是什么颜色的?
(3)彩灯是按什么规律排列的?第20盏是什么颜色?第23盏呢?
(4)彩旗是按什么规律排列的?第26面旗是什么颜色?第28面呢?
2.解读过程。
(1)通过观察发现,盆花、彩灯和彩旗的排列都是有规律的,每种物体都是从左边起,几个一组排列下来的,而且同种物体中,每组的排列顺序都相同。
(2)仔细观察盆花,是按照蓝、黄、红依次排列的,可以把每3盆看成一组,每组按“蓝花、黄花、红花”的顺序排列的,即每组的第1盆是蓝花,第2盆是黄花,第3盆是红花。可以像下面这样圈一圈:
像上面这样同一事物依次重复出现叫作周期现象。
盆花的排列可以看成每3盆是一个周期,要求第19盆是什么颜色的,就用19÷3=6(组)……1(盆),即19盆花中前面的18盆正好是6组,余下的1盆是第七组中的第1盆,也就是蓝花。
(3)按照上面的规律,可以发现彩灯是每4盏一组,每组都是按照“红灯、紫灯、绿灯、紫灯”的顺序排列的。
20÷4=5(组),所以第20盏正好是第五组的最后一盏灯,也就是紫灯;
23÷4=5(组)……3(盏),所以第23盏是第六组中的第3盏灯,也就是绿灯。
(4)通过观察可以发现,彩旗是按照“红红黄黄红红黄黄……”每4面旗子一个周期排列的。
26÷4=6(组)……2(面),第26面旗是第七组的第2面,应该是红旗;
28÷4=7(组),第28面旗正好是第七组的最后一面,应该是黄旗。
(5)拓展应用。
你能用△、□和○这三种图形设计一个按照周期规律排列的图形序列吗?
通过上面彩旗、彩灯和盆花的排列规律我们知道,按照周期排列的物体总是一组一组出现的,所以我们可以把△、□和○设计成任意排列的一组,比如按照“△、□、○”的顺序可以排成序列△、□、○、△、□、○、△、□、○……
还可以按照“△△、□□、○○”的顺序排成序列△△、□□、○○、△△、□□、○○……
不管怎样排列,按照周期排列的事物至少要观察两组才能发现它们的排列周期,进而可以通过计算得出周期序列中任一事物的规律。
3.课堂小结。
(1)同一种事物依次重复出现叫作周期现象。
(2)按照周期排列的物体至少要观察两组物体才能发现它们的排列周期。
小语
基础知识库
精彩呈现
免责声明:本文所有图文、音视频均来自网络,仅供学习交流使用,版权归原作者所有,除非无法确认,我们都会标明作者及出处,如有侵权烦请告知,我们会立即删除并表示歉意。谢谢!