数学分析闭区间套定理_数学分析原理【加图加注扩充笔记】【Compact】

本文详细探讨了数学分析中的紧集概念,包括开覆盖、紧致性定义、紧集的性质及其证明,如紧集是闭集、紧集的闭子集仍为紧集、闭集与紧集的交集为紧集等。还介绍了海涅博雷尔定理和Weierstrass定理,阐述了紧集中的无限子集必然有极限点的重要性。

4b8a65c55eb3f1d9c623d47634f49d71.png

Compact 紧集

Def. [开覆盖 Open Cover] (2.31)

By an open cover of a set

in a metric space
we mean a collection
of open subsets of
such that
.

Def. [紧致 Compact] (2.32)

A subset

of a metric space
is said to be
compact if every open cover of
contains a
finite subcover.

More explicitly, if

is an open cover of
, then there are
finitely many indices
such that

Theorem [紧致集合的保局部性质] (2.33)

Suppose

. Then
is
compact relative to
if and only if
is
compact relative to
.

Thinking. 利用紧致性的定义,寻找一组在

中的有限开集
,证明这组开集就是在
中的
的开覆盖;反之在
中的有限开集可做
中的开覆盖。

核心点在于

中的开集
如何与
中的开集
建立联系(令
即可),让这两者交替担任
的 “开覆盖”,达到传递作用。

Proof. "

": Suppose
is compact relative to
, we will show that
is also compact relative to
.

Let

be a collection of sets, open relative to
, such that
.

By【Theorem 2.30 降临定理】, there are sets

, open relative to
, such that
, for all index
.

Since

is compact relative to
(By suppose), we have

for some choice of finitely many indices

.

Since

, impiles

This proves that

is compact relative to
.

"

": 【逆流而上倒着写一遍即可】Suppose
is compact relative to
, let
be a collection of open subsets of
which covers
, and put
. Then
for some choice of
; and since
, then
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值