Compact 紧集
Def. [开覆盖 Open Cover] (2.31)
By an open cover of a set
Def. [紧致 Compact] (2.32)
A subset
compact if every open cover of
More explicitly, if
finitely many indices
Theorem [紧致集合的保局部性质] (2.33)
Suppose
compact relative to
compact relative to
Thinking. 利用紧致性的定义,寻找一组在
核心点在于
Proof. "
Let
By【Theorem 2.30 降临定理】, there are sets
Since
for some choice of finitely many indices
Since
This proves that
"

本文详细探讨了数学分析中的紧集概念,包括开覆盖、紧致性定义、紧集的性质及其证明,如紧集是闭集、紧集的闭子集仍为紧集、闭集与紧集的交集为紧集等。还介绍了海涅博雷尔定理和Weierstrass定理,阐述了紧集中的无限子集必然有极限点的重要性。
最低0.47元/天 解锁文章
1071

被折叠的 条评论
为什么被折叠?



