Logistic回归结果的回归系数和OR值解读。Logistic回归虽然名字叫”回归” ,但却是一种分类学习方法。使用场景大概有两个:第一用来预测,第二寻找因变量的影响因素。
一 从线性回归到Logistic回归
线性回归和Logistic回归都是广义线性模型的特例。
假设有一个因变量y和一组自变量x1, x2, x3, ... , xn,其中y为连续变量,我们可以拟合一个线性方程:
y =β0+β1*x1+β2*x2+β3*x3+...+βn*xn
并通过最小二乘法估计各个β系数的值。
如果y为二分类变量,只能取值0或1,那么线性回归方程就会遇到困难: 方程右侧是一个连续的值,取值为负无穷到正无穷,而左侧只能取值[0,1],无法对应。为了继续使用线性回归的思想,统计学家想到了一个变换方法,就是将方程右边的取值变换为[0,1]。最后选中了Logistic函数:
y = 1 / (1+e-x)
这是一个S型函数,值域为(0,1),能将任何数值映射到(0,1),且具有无限阶可导等优良数学性质。
我们将线性回归方程改写为:
y = 1 / (1+e-z),
其中,z =β0+β1*x1+β2*x2+β3*x3+...+βn*xn
此时方程两边的取值都在0和1之间。
进一步数学变换,可以写为:
Ln(y/(1-y)) =β0+β1*x1+β2*x2+β3*x3+...+βn*xn
Ln(y/(1-y))称为Logit变换。我们再将y视为y取值为1的概率p(y=1),因此,1-y就是y取值为0的概率p(y=0),所以上式改写为:
p(y=1) = ez/(1+ez),
p(y=0) = 1/(1+ez),
其中,z =β0+β1*x1+β2*x2+β3*x3+...+βn*xn.
接下来就可以使用”最大似然法”估计出各个系数β。
二 odds与OR复习
<
本文详细介绍了Logistic回归的原理,从线性回归到Logistic转换,探讨了Logistic回归在处理二分类问题中的应用。通过实例解释了回归系数和OR值的意义,展示了如何解读和应用Logistic回归结果,包括单一变量和多个变量模型,以及交互效应的影响。
最低0.47元/天 解锁文章
1634

被折叠的 条评论
为什么被折叠?



