深度学习的显卡环境配置是一个非常麻烦的问题,理论上这是一个深度学习开发必须要面临的问题,那么教程就应该很多,后人学习起来的时候应该会很容易,实际上却是教程良莠不齐,而且很多教程往往是针对特定显卡的,但是这个和作者无关,只是说随着显卡更新换代,之前的很多教程其实就是无法使用了。在这里笔者通过帮室友配置gtx1660ti和自己配置教研室1050ti所遇到的完全不一样的问题做出记录个解决,基本能够解决绝大部分问题。
教程会完成驱动安装,conda安装,cuda,cudnn安装以及相应的虚拟环境环境配置,直到最后测试成功调用GPU,考虑到可操作性,教程尽量以多图方式展示,或者就是解释性良好的参考资料。
教程的目标是完成是在各个装完ubuntu系统之后的深度学习环境配置。安装顺序如下:安装显卡驱动
安装conda(本教程不会介绍具体过程)
安装cuda
安装cudnn
创建虚拟环境,配置TensorFlow和pytorch的深度学习环境
驱动安装
划重点在安装好ubuntu系统后,首先第一步先装显卡驱动!先装显卡驱动!!先装显卡驱动!!!,重要的事情说三遍,有些电脑是不装驱动就不能用,自己肯定会先装驱动,但是有些电脑是不装驱动也照样用的好好的,可能最后才来弄自己的显卡驱动,但是装驱动坑太多,很容易开机之后无法登陆,最后只能重装系统,这样之前的工作就算是白费了。不要问我为什么知道,,,