conda cudnn版本升级_ubuntu18.04系统下NVIDIA显卡驱动+cuda+cudnn安装+conda虚拟环境配置...

本文详细记录了在Ubuntu18.04系统下,如何安装NVIDIA显卡驱动、CUDA、CUDNN,并通过conda配置深度学习环境,包括conda安装、CUDA和CUDNN版本选择、驱动安装步骤及可能遇到的问题,最后测试了TensorFlow和PyTorch的GPU支持。
摘要由CSDN通过智能技术生成

深度学习的显卡环境配置是一个非常麻烦的问题,理论上这是一个深度学习开发必须要面临的问题,那么教程就应该很多,后人学习起来的时候应该会很容易,实际上却是教程良莠不齐,而且很多教程往往是针对特定显卡的,但是这个和作者无关,只是说随着显卡更新换代,之前的很多教程其实就是无法使用了。在这里笔者通过帮室友配置gtx1660ti和自己配置教研室1050ti所遇到的完全不一样的问题做出记录个解决,基本能够解决绝大部分问题。

教程会完成驱动安装,conda安装,cuda,cudnn安装以及相应的虚拟环境环境配置,直到最后测试成功调用GPU,考虑到可操作性,教程尽量以多图方式展示,或者就是解释性良好的参考资料。

教程的目标是完成是在各个装完ubuntu系统之后的深度学习环境配置。安装顺序如下:安装显卡驱动

安装conda(本教程不会介绍具体过程)

安装cuda

安装cudnn

创建虚拟环境,配置TensorFlow和pytorch的深度学习环境

驱动安装

划重点在安装好ubuntu系统后,首先第一步先装显卡驱动!先装显卡驱动!!先装显卡驱动!!!,重要的事情说三遍,有些电脑是不装驱动就不能用,自己肯定会先装驱动,但是有些电脑是不装驱动也照样用的好好的,可能最后才来弄自己的显卡驱动,但是装驱动坑太多,很容易开机之后无法登陆,最后只能重装系统,这样之前的工作就算是白费了。不要问我为什么知道,,,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值