肺结节目标检测_基于改进Faster R-CNN的肺结节检测

本文研究了基于改进Faster R-CNN的肺结节检测算法,通过数据增强扩大CT图像数据集,使用VGG16网络提取特征,并设计了适应肺结节尺寸变化的小锚框,提高了检测准确性。
摘要由CSDN通过智能技术生成

基于改进

Faster R-CNN

的肺结节检测

肺癌在我国乃至全球范围内

,

都是发病率及死亡率最高的恶性肿瘤。其早期

的表现形式是直径不超过

30mm

的肺内圆形或不规则形结节。

肺癌的早期诊断与治疗是降低其死亡率的最有效的手段。

肺结节检测主要通

CT

检查来实现

,

研究表明

,

低剂量

CT

检查可以有效降低肺癌患者的死亡率。

因此

,

低剂量

CT

逐渐成为当前主流的肺结节检查工具。

深度学习在医学图像

领域非常流行

,Faster R-CNN

是基于深度学习的一种目标检测算法。

鉴于此

,

本文在低剂量二维

CT

胸部图像下研究基于改进

Faster R-CNN

的肺

结节检测算法。本文的主要工作如下

:

(

1

)基于改进

Faster R-CNN

的肺结节检

测为了快速发现数百幅的二维

CT

胸部图像中肺结节的准确位置

,

提出一种基于

改进

Faster R-CNN

的肺结节检测方法。

首先

,

采用数据增强技术

,

扩大数据集

,

再手工标注数据集。

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值