基于改进
Faster R-CNN
的肺结节检测
肺癌在我国乃至全球范围内
,
都是发病率及死亡率最高的恶性肿瘤。其早期
的表现形式是直径不超过
30mm
的肺内圆形或不规则形结节。
肺癌的早期诊断与治疗是降低其死亡率的最有效的手段。
肺结节检测主要通
过
CT
检查来实现
,
研究表明
,
低剂量
CT
检查可以有效降低肺癌患者的死亡率。
因此
,
低剂量
CT
逐渐成为当前主流的肺结节检查工具。
深度学习在医学图像
领域非常流行
,Faster R-CNN
是基于深度学习的一种目标检测算法。
鉴于此
,
本文在低剂量二维
CT
胸部图像下研究基于改进
Faster R-CNN
的肺
结节检测算法。本文的主要工作如下
:
(
1
)基于改进
Faster R-CNN
的肺结节检
测为了快速发现数百幅的二维
CT
胸部图像中肺结节的准确位置
,
提出一种基于
改进
Faster R-CNN
的肺结节检测方法。
首先
,
采用数据增强技术
,
扩大数据集
,
再手工标注数据集。
<