关于肺结节实时的目标检测

本文探讨了如何使用深度学习的目标检测技术进行肺结节的实时检测。首先,通过ImageGrab库实现在屏幕固定区域的检测,然后展示了对视频的检测,包括读取视频文件并进行处理。虽然没有进行Resize操作,但检测结果仍然符合预期。文章最后进行了反思,指出代码存在的潜在问题。
摘要由CSDN通过智能技术生成

目录

1. 对屏幕固定区域的检测

1.1 代码

1.2 结果展示

2. video 检测

2.1 代码

2.2 展示

2.3 gif 文件展示

3.  反思


1. 对屏幕固定区域的检测

实时检测电脑屏幕的某一个区域,对这部分区域进行检测

1.1 代码

代码实现比较简单,利用ImageGrab 抓取指定的区域,就可以实现单张图像的检测。

当加入了循环后,就可以实现一个实时的区域检测

因为当时训练这个网络的时候,模型是单通道输入的,所以这里将输入的图像更改为灰度图

import torch
import numpy as np
import cv2
from torchvision.transforms import transforms
from torchvision.models import detection
from PIL import ImageGrab  # 抓取屏幕的文件


# 预处理
transformer = transforms.Compose([transforms.ToTensor()])

# 运行设备
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'

# 类名转换
id_to_class = {'1':'A'}

# 加载网络模型
model = detect
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ai 医学图像分割

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值