肺结节目标检测_一种基于CT图像的肺结节检测方法及系统与流程

本发明属于医学图像分析和计算机辅助诊断等技术领域,更具体地,涉及一种基于CT图像的肺结节检测方法及系统。

背景技术:

肺癌是导致患癌死亡的最危险的疾病之一,其发病率占所有癌症的三分之二,且5年存活率为18%。临床经验表明,如果能够在早期诊断出肺癌,那么患者存活的几率将会大幅度提升。使用基于肺部的计算机断层扫描(CT)图像的诊断方法,是早期肺癌诊断和提高患者存活率的重要策略。在基于医学影像学的诊断方法中,准确地对肺结节进行检测是诊断早期肺癌的重要步骤。为了开发健壮的肺结节自动检测系统具有重要的临床意义。但由于CT图像上肺结节的异质性,导致很难获得一个令人满意的检测结果。例如,对于钙化状结节、空洞型结节和磨玻璃状结节而言,它们从形状,纹理以及灰度等多个方面均反映出肺结节的异质性。此外,由于肺结节与其周围组织之间的高度相似性,对开发一个鲁棒的检测系统也是一个挑战。例如,对于并发型结节而言,由于结节与肺壁的灰度几乎相同,导致我们很难自动定位出它的准确位置。类似地,对于直径小于6mm的小型结节,由于其与周围的噪声具有相似的灰度,导致此类结节难以区分。

近年来,为了获得一个较好的检测效果,很多方法被提出。这些方法通常可分为传统的检测方法,机器学习类算法以及基于卷积神经网络的方法。在传统的检测方法中,为了从背景较为复杂的肺部环境中检测出结节,形态学操作,基于阈值的方法,聚类算法以及能量优化算法等等,已被广泛应用。例如,Rezaie等人于2017年提出了“Detection of Lung Nodules on Medical Images by the Use of Fractal Segmentation”,该方法首先基于阈值类方法选择可能存在结节的感兴趣区域,然后使用边缘检测类算法对肺结节进行定位。在机器学习方法中,人们将分类模型与高级特征相结合以用于肺结节的检测。例如,Aghabalaei等人于2017年提出了“Automatic lung nodule detection based on statistical region merging and support vector machines”,该方法设计了一组光谱,纹理和形状特征来表征结节,之后使用SVM分类器对候选结节进行分类。在卷积神经网络的方法中,研究人员以有监督的方式端到端地训练肺结节检测模型,同时使用卷积神经网络来学习结节的相关特征,取代传统人工设计的特征,如形状和纹理特征。例如,Ding等人于2017年提出了“Accurate Pulmonary Nodule Detection in Computed Tomography Images Using Deep Convolutional Neural Networks”,该方法首先基于Faster R-CNN进行候选结节的检测,之后使用三维的深度卷积神经网络来减少候选结节中的假阳性。为了进一步提高肺结节检测方法的泛化能力,本发明提出了一种基于UNet,DSSD和3DCNN的肺结节检测方法。

技术实现要素:

针对现有技术的以上缺陷或改进需求,本发明的目的在于提供一种基于CT图像的肺结节检测方法及系统,其中通过对CT图像中肺结节检测方法的整体流程以及各个功能模块的设计及细节结构等进行改进,与现有技术相比能够有效地减少对检测结果的人工干预,本发明提供的肺结节检测方法可以对各种类型的肺结节进行检测,能够克服肺结节与其周围组织之间的高度相似性,以及其自身的异质性,同时实现较为理想的检测性能,进而能够很好地辅助医生进行肺癌的诊断。并且,本发明通过采用特殊设计的DSSD网络,能够将现有技术中针对自然图像的DSSD网络转用到医学图像领域,与另外的UNet网络和3DCNN网络一起,可有效实现基于CT图像的肺结节检测方法及系统。

为实现上述目的,按照本发明的一个方面,提供了一种基于CT图像的肺结节检测方法,其特征在于,包含以下步骤:

(1)基于UNet网络的快速定位处理:利用训练完成的UNet模型对待处理的CT图像进行两次预测,以获得对应于CT图像中疑似肺结节的结节掩码区域;所述两次预测操作包括利用UNet模型进行的第一次预测及第二次预测,其中,第二次预测是以第一次预测的结果为中心进行的再次预测;

(2)基于DSSD网络的目标检测处理:对与所述步骤(1)中得到的所述结节掩码区域对应的图像块,利用训练完成的DSSD模型进行预测,以获得候选肺结节的检测结果;

(3)基于3DCNN的假阳性筛选处理:利用训练完成的3DCNN模型对所述步骤(2)中得到的候选肺结节进行筛选,以剔除其中的假阳性结节。

作为本发明的进一步优选,所述步骤(1)中,所述UNet模型具体是基于残差密集块的UNet网络训练得到,该网络包括六个残差密集块、三个二维的最大池化层、三个二维的上采样层、以及一个Sigmoid回归层,其中,输入的图像通过第一残差密集块得到第一中间结果,再通过第一最大池化层输送到第二残差密集块得到第二中间结果,再通过第二最大池化层输送到第三残差密集块得到第三中间结果,再通过第三最大池化层和第四上采样层得到的结果与所述第三中间结果拼接后输入至第四残差密集块得到第四中间结果,该第四中间结果与所述第二中间结果拼接后输入至第五残差密集块得到第五中间结果,该第五中间结果与所述第一中间结果拼接后输入至第六残差密集块再经Sigmoid回归层处理后即可得到最终的预测结果;

任意一个所述残差密集块均由六个密集块的堆叠和一个残差块的连接构成。

作为本发明的进一步优选,所述步骤(1)中,所述UNet模型是经过训练得到的;所述UNet模型的训练具体是先根据肺结节公开数据集使用基于边界的加权采样策略对正样本进行采样,然后使用随机采样策略对负样本进行采样,接着基于Hard Mining的思想利用这些正样本和负样本进行训练;

其中,所述基于边界的加权采样策略,具体是根据每个肺结节体素与肺结节边缘体素的最小距离来分配相应的采样权重;优选是以肺结节边界体素的个数为基准,确定结节类和非结节类体素的采样规模,再以各个结节类体素点为中心获取64×64×3的图像块作为正样本;然后,随机对非肺结节类进行采样,再以各个已采样的非肺结节类体素点为中心获取64×64×3的图像块作为负样本,从而利用这些正样本和负样本对基于UNet网络的定位模型进行训练;

更优选的,结节类体素点采样权重可根据如下的式(1)获得:

其中,PWk表示肺结节类中第k个体素的采样权重;N表示属于肺结节的体素的集合;E表示属于肺结节边缘的体素集合;d(k,t)表示N中第k个体素与E中第t个体素之间的欧氏距离。

作为本发明的进一步优选,所述步骤(2)中,所述DSSD模型是通过对基于DSSD网络的检测架构进行训练得到,具体包括基于VGG16结构的主链网络,与该主链网络相连的依次排列的四个反卷积模块,以及分别与该主链网络及四个反卷积模块单独连接且用于输出检测结果的五个预测模块;其中,所述基于VGG16结构的主链网络依次包括第一卷积层、第一池化层、第二卷积层、第三卷积层、第四卷积层、第五卷积层、1x1的卷积层、及第六卷积层;所述四个反卷积模块中,第一反卷积模块基于所述第六卷积层输出的结果与所述1x1卷积层的输出结果一起送入第一反卷积模块得到第一中间反卷积结果;所述第二反卷积模块基于所述第一中间反卷积结果与所述第四卷积层的输出结果一起送入第二反卷积模块得到第二中间反卷积结果;第三反卷积模块基于所述第二中间反卷积结果与所述第三卷积层的输出结果一起送入第三反卷积模块得到第三中间反卷积结果;第四反卷积模块基于所述第三中间反卷积结果与所述第四卷积层的输出结果一起送入第四反卷积模块得到第四中间反卷积结果;所述五个预测模块中,第一预测模块用于基于所述第六卷积层输出的结果进行预测,第二预测模块用于基于所述第一中间反卷积结果进行预测,第三预测模块用于基于所述第二中间反

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值