某项目的双代号网络图如下所示_导入Project,横道图秒变双代号网络图

本文介绍了如何通过广联达斑马进度软件,将Project编制的横道图快速转换为双代号网络图,以检查计划逻辑关系和关键路径,提升进度计划质量。提供了视频和图文教程,包括导入Project文件、检查WBS结构、检查修改计划等步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

bc4121956ed45a719d433fb05b040de3.gif

将Project编制的计划导入到斑马进度计划软件中,可以自动生成双代号网络图,直观发现Project计划的逻辑关系错漏问题,检查关键路径和工期是否正确,为编制高质量进度计划保驾护航!

视频教程如下:

知乎视频​www.zhihu.com

本视频是由广联达斑马进度高级实施顾问简博带来的计划软件实操培训,导入Project,横道图秒变双代号网络图。

图文教程如下:

1、导入Project

1)点击菜单栏的【文件】按钮,选择【打开向导】,点击导入Project。选择要导入的Project工程文件,点击打开

dd8fceddf8002acd5563bea4e1702a9e.png

2)选择存储位置【本地】,创建

dd8fceddf8002acd5563bea4e1702a9e.png

2、检查WBS结构(父子层级):为使导入后生成的双代号网络图层级结构更加清晰、美观,可将父工作转换成分区(没有父子结构可忽略)

1)在表格分区列,单独勾选父工作前的小方框,自主选择父工作转换成分区

825e896b831658c59b70f6cc0aa84c81.png

2)在表格分区列,下拉选择【所有父工作转换成分区】,一键将父工作全部转换成分区

9a275bdce473389e5b3ccde41b77dd53.png

转换分区前

3bfd45664c4ecad171b20e25aae2deb4.png

转换分区后

04bfc9d550922f56988ef5fa056583e5.png

3、检查修改计划:

(1)可以通过斑马进度计划软件的【计划云检查】和【国际检查】功能检查计划中是否存在逻辑断点和错误逻辑关系。

958cb675261da5139fa7a01763395a79.png

9e1d71b43e2324c00e873202f1f3142a.png

(2)如存在错误逻辑关系或逻辑关系断点,可通过断开逻辑关系或连接逻辑关系,修改或健全逻辑关系。

1)断开逻辑关系:按住Ctrl,左键双击竖向线

52456684bdf7b0b6a8764d4fcb92b127.png

2)连接逻辑关系:按住Ctrl,左键点击要连接的节点代号

78575f33bd82f9480814308809c33d9b.png

3)边改边查边打分

214b9aec061928093ff3be1873fac95e.png

项目可控,从进度开始

做计划,就选广联达斑马进度

在创建双代号网络图并判断关键路径时,通常我们会使用项目管理或工程软件如Microsoft Project、Primavera P6或专业的形工具,以及一些编程语言比如Python中的networkx库结合pandas等数据处理工具。以下是一个简单的步骤概述: 1. **创建节点**:网络图由活动(任务)和连接它们的线路(依赖关系)组成。每个活动用一个节点表示,例如"活动A"。 2. **定义箭头和权重**:每条箭头表示从一个活动到另一个活动的顺序关系,箭头的长度可以代表时间消耗(例如,如果活动B需要在活动A完成后开始,则画一条从A指向B的箭头)。箭头旁边通常会有时间成本或持续时间的信息。 3. **输入数据**:可以手动输入数据,也可以通过CSV或其他格式的数据文件导入。 4. **绘制网络图**:利用Python库,如`networkx.draw()`函数将节点和边绘制成表。 5. **识别关键路径**:关键路径是从项目的开始节点到结束节点的所有路径中,总时间最长的那一条。网络流算法(如Dijkstra's algorithm或Ford-Fulkerson算法)可以帮助计算最短路径,而排除掉非关键路径上的非强制性任务。 ```python import networkx as nx import pandas as pd # 假设df包含任务名,开始,结束和持续时间 data = {'Activity': ['A', 'B', 'C', 'D', 'E'], 'Start': [0, 1, 2, 3, 4], 'End': [3, 4, 5, 7, 8], 'Duration': [2, 3, 1, 2, 2]} df = pd.DataFrame(data) # 创建网络图 G = nx.DiGraph() for index, row in df.iterrows(): G.add_edge(row['Start'], row['End'], weight=row['Duration']) # 查找关键路径 critical_path = nx.dijkstra_path(G, source=0, target=len(df)-1) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值