leetcode最大矩形_leetcode(84/85)---最大矩形求解

84、柱状图中最大的矩形

1)局部峰值求解

维护一个局部峰值minH,得到局部峰值之后,向左侧依次拓展,时间复杂度较高

class Solution {
public:
    int largestRectangleArea(vector<int>& heights) {
        int n=heights.size(),res=0;
        for(int i=0;i<n;i++){
            while(i<n-1 && heights[i]<=heights[i+1]) i++;
            int minH=heights[i];
            for(int j=i;j>=0;j--){
                minH=min(minH,height[j]);
                int area=(j-i+1)*minH;
                res=max(res,area);
            }
        }
        return res;
    }
};

2)递增栈求解

递增栈求解 维护一个递增栈,当当前元素小于栈顶元素时候,开始触发,接下来求解结果,如下

class Solution {
public:
    int largestRectangleArea(vector<int>& heights) {
        heights.push_back(0);
        int n=heights.size(),res=0;
        stack<int> sta;
        for(int i=0;i<n;i++){
            while(!sta.empty() && heights[sta.top()]>=heights[i]){
                int cur=sta.top();
                sta.pop();
                res=max(res,heights[cur]*(sta.empty()?i:i-sta.top()-1));
            }
            sta.push(i);
        }
        return res;
    }
};

85、最大矩形

期初以为这道题目需要用动态规划求解,类似于最大正方形那样,不过真的太难了,想不出来,因此找了一个简单的方法,结合柱状图中最大矩形的面积求解,实现如下:

class Solution {
public:
    int maximalRectangle(vector<vector<char>>& matrix) {
        if(matrix.empty() || matrix[0].empty()) return 0;
        int m=matrix.size(),n=matrix[0].size();
        vector<int> height(n,0);
        int j=0,res=0;
        while(j<m){
            for(int i=0;i<n;i++){
                if(matrix[j][i]=='0') height[i]=0;
                else height[i]+=1;
            }
            res=max(res,largestRectangleArea(height));
            j++;
        }
        return res;
    }
    int largestRectangleArea(vector<int>& heights) {
        heights.push_back(0);
        int n=heights.size(),res=0;
        stack<int> sta;
        for(int i=0;i<n;i++){
            while(!sta.empty() && heights[sta.top()]>=heights[i]){
                int cur=sta.top();
                sta.pop();
                res=max(res,heights[cur]*(sta.empty()?i:i-sta.top()-1));
            }
            sta.push(i);
        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值