预处理共轭梯度法(1)
1.共轭梯度法的收敛性分析
定理:设A为n x n对称正定矩阵,其最大与最小特征值分别为
λ
1
\lambda _{1}
λ1和
λ
n
\lambda _{n}
λn,
A
x
=
b
Ax = b
Ax=b的精确解为
x
∗
x^{*}
x∗,则对任意初始
x
(
0
)
x^{(0)}
x(0),求解
A
x
=
b
Ax = b
Ax=b的共轭梯度法有
∥
x
(
k
)
−
x
∗
∥
A
⩽
2
(
c
o
n
d
(
A
)
−
1
c
o
n
d
(
A
)
+
1
)
k
∥
x
(
0
)
−
x
∗
∥
A
\left \|x^{(k)}-x^{*}\right \|_{A}\leqslant 2(\frac{\sqrt{cond(A)}-1}{\sqrt{cond(A)}+1})^{k}\left \|x^{(0)}-x^*\right \|_{A}
∥∥∥x(k)−x∗∥∥∥A⩽2(cond(A)+1cond(A)−1)k∥∥∥x(0)−x∗∥∥∥A
其中
c
o
n
d
(
A
)
2
=
λ
1
(
A
)
λ
n
(
A
)
cond(A)_2=\frac{\lambda_1(A)}{\lambda_n(A)}
cond(A)2=λn(A)λ1(A)。
我们观察 ( c o n d ( A ) − 1 c o n d ( A ) + 1 ) k (\frac{\sqrt{cond(A)}-1}{\sqrt{cond(A)}+1})^{k} (cond(A)+1cond(A)−1)k可以知道
当 λ 1 > > λ n \lambda_1>>\lambda_n λ1>>λn时,或者 c o n d ( A ) 2 cond(A)_2 cond(A)2较大时,共轭梯度法的收敛效率会变得比较低。
2.预处理的基本思想
预处理被称为PCG方法(preconditioned conjugated gradient method)
既然共轭梯度法的收敛速度取决于系数矩阵的特征值,那么我们可以将 A x = b Ax = b Ax=b转化为等价的 A ~ x = b ~ \widetilde{A}x = \widetilde{b} A x=b 。
使得 A ~ x = b ~ \widetilde{A}x = \widetilde{b} A x=b 在与 A x = b Ax = b Ax=b同解的前提下,而 A ~ \widetilde{A} A 的最大、最小的特征值之比远小于A的最大、最小的特征值之比。
从而再次运用共轭梯度法求解方程组能够达到提高收敛速度的效果。
3.预处理共轭梯度法
求解
A
x
=
b
Ax = b
Ax=b
其中A为n阶系数的对称正定矩阵。现寻找非奇异的n阶矩阵C,使得
A
‾
=
C
−
1
A
(
C
−
1
)
T
\overline{A} = C^{-1}A (C^{-1})^T
A=C−1A(C−1)T的条件数比A的条件数小。而
A
‾
\overline{A}
A也是对称正定矩阵。
我们接着令
x
‾
=
C
T
x
,
b
=
C
−
1
b
\overline{x} = C^{T}x,b = C^{-1}b
x=CTx,b=C−1b,最终将问题转化为求解
A
‾
x
‾
=
b
‾
\overline{A}\overline{x} = \overline{b}
Ax=b
然后通过
x
=
(
C
T
)
−
1
x
‾
x = (C^{T})^{-1}\overline{x}
x=(CT)−1x求出原问题的解。
4.预处理矩阵
已知在通过迭代法求解线性方程组的过程中,我们需要清楚每次下降的方向和下降的步长。
(1)下降的方向
d ‾ ( k + 1 ) = d ‾ ( r + 1 ) + β ‾ k d ‾ ( k ) \overline{d}^{(k+1)}=\overline{d}^{(r+1)}+\overline{\beta}_{k}\overline{d}^{(k)} d(k+1)=d(r+1)+βkd(k)
通过已知的变换,我们可以得出 d ‾ ( k ) = C T d ( k ) \overline{d}^{(k)} = C^Td^{(k)} d(k)=CTd(k)(与 x x x的变换是一致的)和 r ‾ ( k ) = C − 1 r ( k ) \overline{r}^{(k)}=C^{-1}r^{(k)} r(k)=C−1r(k)。
我们有:
d
(
k
+
1
)
=
C
−
T
d
‾
(
k
+
1
)
=
C
−
T
(
r
‾
(
k
+
1
)
+
β
‾
k
d
‾
(
k
)
)
d^{(k+1)}=C^{-T}\overline{d}^{(k+1)}=C^{-T}(\overline{r}^{(k+1)}+\overline{\beta}_{k}\overline{d}^{(k)})
d(k+1)=C−Td(k+1)=C−T(r(k+1)+βkd(k))
其中,
β
‾
k
=
(
r
‾
(
k
+
1
)
,
r
‾
(
k
+
1
)
)
(
r
‾
(
k
)
,
r
‾
(
k
)
)
\overline{\beta}_{k}=\frac{(\overline{r}^{(k+1)},\overline{r}^{(k+1)})}{(\overline{r}^{(k)},\overline{r}^{(k)})}
βk=(r(k),r(k))(r(k+1),r(k+1))
带入求解后:
d
(
k
+
1
)
=
(
C
C
T
)
−
1
r
(
k
+
1
)
+
β
‾
k
d
(
k
)
d^{(k+1)}=(CC^T)^{-1}r^{(k+1)}+\overline{\beta}_kd^{(k)}
d(k+1)=(CCT)−1r(k+1)+βkd(k)
我们令
M
=
C
C
T
M = CC^{T}
M=CCT,并称其为预处理矩阵
同时我们可以得到: β ‾ k = ( r ‾ ( k + 1 ) , r ‾ ( k + 1 ) ) ( r ‾ ( k ) , r ‾ ( k ) ) = ( z ( k + 1 ) , r ( k + 1 ) ) ( z ( k ) , r ( k ) ) \overline{\beta}_{k}=\frac{(\overline{r}^{(k+1)},\overline{r}^{(k+1)})}{(\overline{r}^{(k)},\overline{r}^{(k)})}=\frac{({z}^{(k+1)},{r}^{(k+1)})}{({z}^{(k)},{r}^{(k)})} βk=(r(k),r(k))(r(k+1),r(k+1))=(z(k),r(k))(z(k+1),r(k+1))
(2)下降的步长
α ‾ k = ( r ‾ ( k ) , r ‾ ( k ) ) ( d ( k ) , A d ( k ) ) = ( z ( k ) , r ( k + 1 ) ) ( A d ( k ) , d ( k ) ) \overline{\alpha}_{k}=\frac{(\overline{r}^{(k)},\overline{r}^{(k)})}{({d}^{(k)},{Ad}^{(k)})}=\frac{({z}^{(k)},{r}^{(k+1)})}{(Ad^{(k)},{d}^{(k)})} αk=(d(k),Ad(k))(r(k),r(k))=(Ad(k),d(k))(z(k),r(k+1))
万事俱备后,我么就可以开始将迭代法进行下去了。
关于预处理矩阵的选取会放在后面讲
5.PCG算法
我们先构造预处理矩阵M(对称正定)
算法:
于是我们接下来的问题就是如何选取预处理矩阵M了