预处理共轭梯度法(1)

预处理共轭梯度法(1)

1.共轭梯度法的收敛性分析

定理:设A为n x n对称正定矩阵,其最大与最小特征值分别为 λ 1 \lambda _{1} λ1 λ n \lambda _{n} λn, A x = b Ax = b Ax=b的精确解为 x ∗ x^{*} x,则对任意初始 x ( 0 ) x^{(0)} x(0),求解 A x = b Ax = b Ax=b的共轭梯度法有
∥ x ( k ) − x ∗ ∥ A ⩽ 2 ( c o n d ( A ) − 1 c o n d ( A ) + 1 ) k ∥ x ( 0 ) − x ∗ ∥ A \left \|x^{(k)}-x^{*}\right \|_{A}\leqslant 2(\frac{\sqrt{cond(A)}-1}{\sqrt{cond(A)}+1})^{k}\left \|x^{(0)}-x^*\right \|_{A} x(k)xA2(cond(A) +1cond(A) 1)kx(0)xA
其中 c o n d ( A ) 2 = λ 1 ( A ) λ n ( A ) cond(A)_2=\frac{\lambda_1(A)}{\lambda_n(A)} cond(A)2=λn(A)λ1(A)

我们观察 ( c o n d ( A ) − 1 c o n d ( A ) + 1 ) k (\frac{\sqrt{cond(A)}-1}{\sqrt{cond(A)}+1})^{k} (cond(A) +1cond(A) 1)k可以知道

λ 1 > > λ n \lambda_1>>\lambda_n λ1>>λn时,或者 c o n d ( A ) 2 cond(A)_2 cond(A)2较大时,共轭梯度法的收敛效率会变得比较低。

2.预处理的基本思想

预处理被称为PCG方法(preconditioned conjugated gradient method)

既然共轭梯度法的收敛速度取决于系数矩阵的特征值,那么我们可以将 A x = b Ax = b Ax=b转化为等价的 A ~ x = b ~ \widetilde{A}x = \widetilde{b} A x=b

使得 A ~ x = b ~ \widetilde{A}x = \widetilde{b} A x=b 在与 A x = b Ax = b Ax=b同解的前提下,而 A ~ \widetilde{A} A 的最大、最小的特征值之比远小于A的最大、最小的特征值之比。

从而再次运用共轭梯度法求解方程组能够达到提高收敛速度的效果。

3.预处理共轭梯度法

求解 A x = b Ax = b Ax=b
其中A为n阶系数的对称正定矩阵。现寻找非奇异的n阶矩阵C,使得 A ‾ = C − 1 A ( C − 1 ) T \overline{A} = C^{-1}A (C^{-1})^T A=C1A(C1)T的条件数比A的条件数小。而 A ‾ \overline{A} A也是对称正定矩阵。

我们接着令 x ‾ = C T x , b = C − 1 b \overline{x} = C^{T}x,b = C^{-1}b x=CTx,b=C1b,最终将问题转化为求解 A ‾ x ‾ = b ‾ \overline{A}\overline{x} = \overline{b} Ax=b
然后通过 x = ( C T ) − 1 x ‾ x = (C^{T})^{-1}\overline{x} x=(CT)1x求出原问题的解。

4.预处理矩阵

已知在通过迭代法求解线性方程组的过程中,我们需要清楚每次下降的方向和下降的步长。

(1)下降的方向

d ‾ ( k + 1 ) = d ‾ ( r + 1 ) + β ‾ k d ‾ ( k ) \overline{d}^{(k+1)}=\overline{d}^{(r+1)}+\overline{\beta}_{k}\overline{d}^{(k)} d(k+1)=d(r+1)+βkd(k)

通过已知的变换,我们可以得出 d ‾ ( k ) = C T d ( k ) \overline{d}^{(k)} = C^Td^{(k)} d(k)=CTd(k)(与 x x x的变换是一致的)和 r ‾ ( k ) = C − 1 r ( k ) \overline{r}^{(k)}=C^{-1}r^{(k)} r(k)=C1r(k)

我们有: d ( k + 1 ) = C − T d ‾ ( k + 1 ) = C − T ( r ‾ ( k + 1 ) + β ‾ k d ‾ ( k ) ) d^{(k+1)}=C^{-T}\overline{d}^{(k+1)}=C^{-T}(\overline{r}^{(k+1)}+\overline{\beta}_{k}\overline{d}^{(k)}) d(k+1)=CTd(k+1)=CT(r(k+1)+βkd(k))
其中, β ‾ k = ( r ‾ ( k + 1 ) , r ‾ ( k + 1 ) ) ( r ‾ ( k ) , r ‾ ( k ) ) \overline{\beta}_{k}=\frac{(\overline{r}^{(k+1)},\overline{r}^{(k+1)})}{(\overline{r}^{(k)},\overline{r}^{(k)})} βk=(r(k),r(k))(r(k+1),r(k+1))

带入求解后: d ( k + 1 ) = ( C C T ) − 1 r ( k + 1 ) + β ‾ k d ( k ) d^{(k+1)}=(CC^T)^{-1}r^{(k+1)}+\overline{\beta}_kd^{(k)} d(k+1)=(CCT)1r(k+1)+βkd(k)
我们令 M = C C T M = CC^{T} M=CCT,并称其为预处理矩阵

同时我们可以得到: β ‾ k = ( r ‾ ( k + 1 ) , r ‾ ( k + 1 ) ) ( r ‾ ( k ) , r ‾ ( k ) ) = ( z ( k + 1 ) , r ( k + 1 ) ) ( z ( k ) , r ( k ) ) \overline{\beta}_{k}=\frac{(\overline{r}^{(k+1)},\overline{r}^{(k+1)})}{(\overline{r}^{(k)},\overline{r}^{(k)})}=\frac{({z}^{(k+1)},{r}^{(k+1)})}{({z}^{(k)},{r}^{(k)})} βk=(r(k),r(k))(r(k+1),r(k+1))=(z(k),r(k))z(k+1),r(k+1))

(2)下降的步长

α ‾ k = ( r ‾ ( k ) , r ‾ ( k ) ) ( d ( k ) , A d ( k ) ) = ( z ( k ) , r ( k + 1 ) ) ( A d ( k ) , d ( k ) ) \overline{\alpha}_{k}=\frac{(\overline{r}^{(k)},\overline{r}^{(k)})}{({d}^{(k)},{Ad}^{(k)})}=\frac{({z}^{(k)},{r}^{(k+1)})}{(Ad^{(k)},{d}^{(k)})} αk=(d(k),Ad(k))(r(k),r(k))=(Ad(k),d(k))z(k),r(k+1))

万事俱备后,我么就可以开始将迭代法进行下去了。
关于预处理矩阵的选取会放在后面讲

5.PCG算法

我们先构造预处理矩阵M(对称正定)
在这里插入图片描述算法:

在这里插入图片描述

于是我们接下来的问题就是如何选取预处理矩阵M了

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值