参数估计_CIR模型的参数估计

CIR模型在金融风控中用于利率和信用风险分析,其解保证非负并均值回归。文章介绍了CIR模型的SDE形式,重点讨论了参数估计的两种方法:回归法和最大似然法,并通过R语言模拟CIR过程,展示参数估计实例,得出回归法和最大似然法的估计结果。

Cox-Ingersoll-Ross (CIR) 模型是量化金融风控中,特别是在利率和信用风险的期限结构模型中经常用到的一种模型。与其他模型如Ho-Lee, Vasicek等相比,它的特点是其解总是非负的(如果满足Feller条件则以概率为1为正),并且满足均值回归性质。

CIR 的基本形式是如下的SDE:

其转移概率为非中心卡方分布(non-central

distribution)

,

其中

为q阶第一类修正贝塞尔函数:

为伽马函数:
  • 模拟

我们可以用通常的 Euler或Milstein方法来模拟CIR过程。

  • 参数估计
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值