最值在很多地方都会出现,并且出现即代表有一定难度,需要一定思考和计算。
如果能创造条件满足基本不等式成立的条件,那么就会很巧妙,就比较简单。一般会在这些地方考察用到基本不等式,选择题的中间部分,填空题倒数1-2个,解答题圆锥曲线第2问。
创造基本不等式成立条件:
一:都为正数;
二:和为定值或积为定值;
三:两数相等。
简称:一正,二定,三相等。

看着简单,但要创造满足的条件需要动脑筋,下面我们通过一道高考题来引导大家,怎么来创造基本不等式成立的条件。

拿到这道题,有同学就开始用基本不等式,想着那三个条件。x,y都大于0,x与2y和为定值,在这两个数相等时用基本不等式求出乘积最大值,进而求出分母最大值。但分子还不能求出,不能盲目这样做。
大家拿到题目时,不能一步基本不等式得到最值时,就不要想当然的认为满足了。这个时候大家可以先化简,进一步观察。

大家进一步想,要和取得最小值,说明乘积要一定,那我们就来创造乘积一定。
把我们这得到的这个式子拆分成两项。

这个时候就明显了,两数相乘为定值,且根号xy也为正数,运用基本不等式得:

这是一道中等难度的利用基本不等式求最值,平时的模拟有很多比这个难。高考的难度和这个差不多。
我们再给一道训练,看大家掌握的怎么样。

中学数学有什么需要帮助的,可以关注我的公粽号“高中数学谭老师”,或者私信问我,我看见后都会回复,希望能帮助你,使你数学得到提升。