不等式的最大值_基本不等式求最值

本文探讨了如何在数学问题中运用基本不等式求解最值,强调了满足一正、二定、三相等的条件。通过一道高考题示例,解释了如何创造条件使基本不等式成立,以及在解题过程中需要注意的步骤和化简方法。同时,提供额外的训练题供读者自我检测掌握情况,并邀请读者关注相关公众号获取更多数学学习资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最值在很多地方都会出现,并且出现即代表有一定难度,需要一定思考和计算。

如果能创造条件满足基本不等式成立的条件,那么就会很巧妙,就比较简单。一般会在这些地方考察用到基本不等式,选择题的中间部分,填空题倒数1-2个,解答题圆锥曲线第2问。

创造基本不等式成立条件:

一:都为正数;

二:和为定值或积为定值;

三:两数相等。

简称:一正,二定,三相等

0197110cc00a4bf362b6d1271615a2e9.png

看着简单,但要创造满足的条件需要动脑筋,下面我们通过一道高考题来引导大家,怎么来创造基本不等式成立的条件。

7ec908043829cb414e813129e36a1b79.png

拿到这道题,有同学就开始用基本不等式,想着那三个条件。x,y都大于0,x与2y和为定值,在这两个数相等时用基本不等式求出乘积最大值,进而求出分母最大值。但分子还不能求出,不能盲目这样做。

大家拿到题目时,不能一步基本不等式得到最值时,就不要想当然的认为满足了。这个时候大家可以先化简,进一步观察。

49796343808aedcf55879c1500dbe4a6.png

大家进一步想,要和取得最小值,说明乘积要一定,那我们就来创造乘积一定。

把我们这得到的这个式子拆分成两项。

fd05974cbd3b1fbe6a22c347d54f27cd.png

这个时候就明显了,两数相乘为定值,且根号xy也为正数,运用基本不等式得:

c7a1f39a0a806c687e628dae6e358c1f.png

这是一道中等难度的利用基本不等式求最值,平时的模拟有很多比这个难。高考的难度和这个差不多。

我们再给一道训练,看大家掌握的怎么样。

fe32912a39a8b9987578e2b5d6eaa35c.png

中学数学有什么需要帮助的,可以关注我的公粽号“高中数学谭老师”,或者私信问我,我看见后都会回复,希望能帮助你,使你数学得到提升。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值