不等式的最大值_高中数学:均值定理、均值不等式的证明及应用

7300e63bcc2cdc26c5db8853cd5b4711.gif

数理化,不可怕,找对方法搞定它。关注我们免费获取更多学习干货、解题技巧、视频课程......



知识梳理 1. 基本不等式 5295edb12a35b8f7bcbb92016d150588.png3d01b8fcc55ad870268d9662a84693b7.png 481c6ffe6fdba52ba24cfba376a98a68.png3ac7c0f3b7bd64c92debf17eb9075604.png 若a>b>0,m>0,则bd80ca32e8d6b85c989b0f53d0032e5e.png; 若a,b同号且a>b,则882f7107c22394259c44478225b2fe55.png990e079771c3fe4afcbfc29736291857.png 2. 均值不等式: 两个正数的均值不等式:a7d447de6befab47736965f645f932c0.png,变形式:ca9b0b1bb4dd2c0f26dad7f13f463ba6.pngbbcb1705fb7f92a079cb408efc5e7b6c.png等。 3. 最值定理:设406bc83768ee717e18854dc4e9d2de96.png (1)如果x,y是正数,且积70bdcc5f5ddb8962b0e0d362fb758bdb.png,则x=y时,42d323abd400b82dcb3737875012f420.png (2)如果x,y是正数,且和fd259819fc9c07b1a2f0d7be03e37b12.png,则x=y时,92f0e5c0b1f78d055f6fc485cf007553.png 运用最值定理求最值的三要素:一正二定三相等。   典型例题 知识点一:利用均值不等式求最值 例1已知a0186e79b3295f22884ee9dabe63f2ea.png且满足3c5d004488a1b9fe74a858521d49a47a.png,求a44f33aad4717977cc99b5122352d7e8.png的最小值。 分析:利用3c5d004488a1b9fe74a858521d49a47a.png,构造均值不等式。 利用基本不等式求最值要注意“一正二定三相等”即(1)要求各数均为正数;(2)要求“和”或“积”为定值;(3)要注意是否具备等号成立的条件。 解析:9972bbb2a87692ebfc2ef8262038713e.pnga0186e79b3295f22884ee9dabe63f2ea.png, ∴5e9b968de24202fa380372236d5aaa72.png8893d9586101a4e31af3dacd1647658c.png,当且仅当193ba5ec13d17beaa5363c5904708005.png时等号成立,即d23e70d8d7e69d28eefe4338d296ffb2.png,∴c73bac1fe828a7152fc03b6fcebe09b4.png,又3c5d004488a1b9fe74a858521d49a47a.png,∴0084b6fd03e63e93e26c52b876cb7918.png  ∴当0084b6fd03e63e93e26c52b876cb7918.png时,a44f33aad4717977cc99b5122352d7e8.png有最小值18。 2(1)已知0<x<07c555f7be0f4111129d5274ce0075af.png,求函数y=x(1-3x)的最大值; (2)求函数y=x+5683f3b0324ce058c93dc85f0d9eb57a.png的值域。 分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x的系数变成互为相反数; (2)中,未指出x>0,因而不能直接使用基本不等式,需分x>0与x<0两种情况讨论。 利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备。 解析:(1)解法一: ∵0<x<07c555f7be0f4111129d5274ce0075af.png,∴1-3x>0。 ∴y=x(1-3x)=07c555f7be0f4111129d5274ce0075af.png·3x(1-3x)≤07c555f7be0f4111129d5274ce0075af.pnga3931222d4ef4a17090ad969a7e433a3.png259debc881f6f7a965312d821c898bd92.png,当且仅当3x=1-3x,即x=87d1b2463cca353bc503d0fe2fc8ccae.png时,等号成立。 ∴x=87d1b2463cca353bc503d0fe2fc8ccae.png时,函数8473aeed5f23c434da0c94a37f3c34fc.png取得最大值59debc881f6f7a965312d821c898bd92.png, 解法二: ∵0<x<07c555f7be0f4111129d5274ce0075af.png,∴07c555f7be0f4111129d5274ce0075af.png-x>0。 ∴y=x(1-3x)=3x(07c555f7be0f4111129d5274ce0075af.png-x)≤3(81408ce25ff383a3707c16e82e45883e.png)259debc881f6f7a965312d821c898bd92.png,当且仅当x=07c555f7be0f4111129d5274ce0075af.png-x,即x=87d1b2463cca353bc503d0fe2fc8ccae.png时,等号成立。 ∴x=87d1b2463cca353bc503d0fe2fc8ccae.png时,函数8473aeed5f23c434da0c94a37f3c34fc.png取得最大值59debc881f6f7a965312d821c898bd92.png。 (2)解: 当x>0时,由基本不等式,得y=x+5683f3b0324ce058c93dc85f0d9eb57a.png≥2afabd3964c6b09da29e42bb5a87a57aa.png=2,当且仅当x=1时,等号成立。 当x<0时,y=x+5683f3b0324ce058c93dc85f0d9eb57a.png=-[(-x)+246fd589abe358dc032b81e76f9cc7b7.png]。 ∵-x>0,∴(-x)+246fd589abe358dc032b81e76f9cc7b7.png≥2,当且仅当-x=e66b83078e3f18ebf90a8e9633099e54.png,即x=-1时,等号成立。 ∴y=x+5683f3b0324ce058c93dc85f0d9eb57a.png≤-2。 综上,可知函数y=x+5683f3b0324ce058c93dc85f0d9eb57a.png的值域为(-∞,-2]∪[2,+∞)。 知识点二:利用均值不等式证明 例3已知82e4be9deb0730fe5bbbb3cb80be1ae8.png,求证:61f2f1976ebd0bd97148a6f801c3a720.png分析:因为是轮换对称不等式,可考虑由局部证整体。 综合法证明不等式常用两个正数的算术平均数不小于它们的几何平均数这一结论,运用时要结合题目条件,有时要适当变形。 解析:615f9709a019e54b3ad585c312f6bdab.pnga3080e638406a683908ff60d2c94ef2d.png, 相加整理得61f2f1976ebd0bd97148a6f801c3a720.png。 当且仅当a10145f7452c5afee5d6cdfd45ef6e3a.png时等号成立。 例4已知a,b为正数,求证:221c3addced4ecefc8e4a6bac7e75e67.pnga4242d633239b00a7cde99a53fed6b24.png分析:观察式子结构,用基本不等式加以证明。 当要证明的不等式形式上比较复杂时,常通过分析法寻求证题思路。“分析法”与“综合法”是数学推理中常用的思维方法,特别是这两种方法的综合运用能力,对解决实际问题有重要的作用。这两种数学方法是高考考查的重要数学思维方法。 解析:解法1:∵a>0,b>0, ∴223e9650d56f990b9c0e557b1fd1fca4.png91ec5539878837204195030cfba71675.png,   c94957405db9cdd3bd5bdb84012d2424.pngccd55ebc53eae459d7c433abdc01f852.png, 两式相加,得 21a015134401be8ae77a855276441881.png4f677df8c32df052cfe95f1d5cafabc6.png, ∴221c3addced4ecefc8e4a6bac7e75e67.pnga4242d633239b00a7cde99a53fed6b24.png。 解法2:361453a0abbb78cbfab96aa7acb81fbc.png2333f99631c2d3a9be351bd56e166e0c.png a5f28cfff813e80674256c8ce698604f.png。 ∴221c3addced4ecefc8e4a6bac7e75e67.pnga4242d633239b00a7cde99a53fed6b24.png  知识点三:均值不等式在实际中的应用 例5某厂生产某种产品的年固定成本为250万元,每生产bede4f12ca219b2f033efc796fd553ab.png千件,需另投入成本为8aa5929673dc4a2d3d560350b83e913e.png。当年产量不足80千件时,33c23fa59504c034173d8cb90c362211.png(万元);当年产量不小于80千件时,1f939890f038e700ce5d586f0c3dd278.png(万元)。每件商品售价为0.05万元。通过市场分析,该厂生产的商品能全部售完。 (1)写出年利润e9ebcbba3198d859a6f332192d72150b.png(万元)关于年产量bede4f12ca219b2f033efc796fd553ab.png(千件)的函数解析式; (2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大? 分析:凑出基本不等式的形式。 求形如1400ad736d885a20832076e30a82e48f.png的函数的最值时可考虑用均值不等式,但要注意条件的限制,可借助函数的图象解题。 解析: ( 1 )当 fb7662f13de1773b7b626586daa3e886.png 时, f6847b23c74d1c8a195d6f55a9a4dd04.png216de098a2e55ce4a6273634c83c89f9.png时,1a810dc517de46111a9e45eb3ca2626e.png96f36386987bf78448b95db598e63204.png (2)当fb7662f13de1773b7b626586daa3e886.png时,d3d34c1ec939dc9d23cfc25a6c1182e8.png,此时,当9a1bd4f18fdc3ca3cea1a4a0d445d30f.png时,92dd4f9722609cc093eb772ce4ceffa3.png取得最大值82712eaedaa38a3b7d8f997ae0740b5a.png(万元); 当216de098a2e55ce4a6273634c83c89f9.png时,60eb9debc83ff74889b4f721a8a66f6e.png 此时,当b01da61dbcf79908c3ed54c1a5c38eb7.png时,即19816b09daeb33df0e2e3f4b584c99b2.png时,92dd4f9722609cc093eb772ce4ceffa3.png取得最大值1000万元。 所以,当产量为100千件时,该厂在这一商品中所获利润最大,最大利润为1000万元。

06d21c3ce7ad15119bb41130afb521d0.png

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值