曲线拟合_RANSAC曲线拟合

本文介绍了如何使用RANSAC(Random Sample Consensus)算法进行曲线拟合。首先,从给定点集中随机选取3个点计算二次曲线参数,接着计算所有点到曲线的距离,将距离小于阈值的点标记为内点。然后,根据内点数量计算概率并更新最优参数。该过程迭代多次,最终得到最佳拟合曲线。此外,提到了calc_parabola_vertex函数采用矩阵形式进行参数求解,与最小二乘法曲线拟合的参数表达式相同。
摘要由CSDN通过智能技术生成

判断逻辑:

1)给出一组点。每次任取3个,然后放到calc_parabola_vertex中求二次曲线的参数

2)以矩阵的形式,计算点到曲线的距离;若小于设定值,则算作内点

3)计算内点概率;若大于之前的概率,则更新概率值,曲线参数。

4)迭代n次,重复上面步骤

5)调用函数,画图

注意:关于calc_parabola_vertex()函数求参。  是用的矩阵形式。 参数最后的表达形式跟【最小二乘法-曲线拟合】中的一样。 可参看推导过程

import numpy as npimport pandas as pdimport csvimport matplotlib.pyplot as pltimport random as rnd# Read data fileheaders = ['x', 'y']df = pd.read_csv('D:/python_train/RANSAC/ransac_sample/Reference/data_2.csv', names=headers)# Extracting x and y columnsx = df['x'].valuesy = df['y'].values# Converting string to floatfor dt in range(0, len(x)):    x[dt] = float(x[dt])    y[dt] = float(y[dt])plt.plot(x, y, '.')# Method to ge
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值