代码
代码已放下面,很多地方都已详细的以伪代码的方式展示,供各位参考。
import numpy as np
from sklearn.linear_model import RANSACRegressor
import matplotlib.pyplot as plt
# 生成带噪声的样本数据
x = np.linspace(-5, 5, 100)
y1 = np.sin(x) + np.random.normal(0, 0.5, size=x.shape) # 生成了带有正弦函数和随机噪声的数据
y2 = np.cos(x) + np.random.normal(0, 0.5, size=x.shape) # + 后面表示生成了服从均值为0,标准差为0.5,长度与X相同的正态分布的随机数列
# 合并数据
X = np.column_stack((x, y1))
y = y2
# 创建 RANSACRegressor 对象并指定基本模型和阈值
ransac = RANSACRegressor(random_state=0) # 用于控制随机数生成器的种子
ransac.fit(X, y)
# 预测新的样本点
x_new = np.linspace(-5, 5, 100)
y_new = ransac.predict(np.column_stack((x_new, np.zeros_like(x_new))))
# 绘制样本数据和拟合的曲线
plt.scatter(x, y2, color='blue', label='Data')
plt.plot(x_new, y_new, color='red', linewidth=2, label='RANSAC')
plt.xlabel('X')
plt.ylabel('y')
plt.legend(loc='lower left')
plt.show()
运行结果如下图所示:
算法原理及流程参考:RANSAC(随机采样一致性算法)_西依奥肖的博客-CSDN博客