RANSAC(随机采样一致性算法)+ 曲线拟合 + Python

该文展示了如何在Python中使用sklearn库的RANSACRegressor对带噪声的正弦和余弦数据进行拟合。通过生成带有随机噪声的样本,然后利用RANSAC算法进行数据清理和模型拟合,最终绘制出拟合曲线。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

代码

代码已放下面,很多地方都已详细的以伪代码的方式展示,供各位参考。

import numpy as np
from sklearn.linear_model import RANSACRegressor
import matplotlib.pyplot as plt

# 生成带噪声的样本数据
x = np.linspace(-5, 5, 100)
y1 = np.sin(x) + np.random.normal(0, 0.5, size=x.shape)  # 生成了带有正弦函数和随机噪声的数据
y2 = np.cos(x) + np.random.normal(0, 0.5, size=x.shape)  # + 后面表示生成了服从均值为0,标准差为0.5,长度与X相同的正态分布的随机数列

# 合并数据
X = np.column_stack((x, y1))
y = y2

# 创建 RANSACRegressor 对象并指定基本模型和阈值
ransac = RANSACRegressor(random_state=0)   # 用于控制随机数生成器的种子
ransac.fit(X, y)

# 预测新的样本点
x_new = np.linspace(-5, 5, 100)
y_new = ransac.predict(np.column_stack((x_new, np.zeros_like(x_new))))

# 绘制样本数据和拟合的曲线
plt.scatter(x, y2, color='blue', label='Data')
plt.plot(x_new, y_new, color='red', linewidth=2, label='RANSAC')
plt.xlabel('X')
plt.ylabel('y')
plt.legend(loc='lower left')
plt.show()

运行结果如下图所示:

算法原理及流程参考:RANSAC(随机采样一致性算法)_西依奥肖的博客-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值