

比例数据、beta分布与beta回归
在生物学数据分析中,经常会涉及到比例型的数据类型。例如,试验成功的概率(试验成功次数/总次数),疾病发生频率(人群中患者数/总人数),物种相对丰度(物种个体数量/群落物种总数)等。比例数据的特点是分布在区间(0, 1)范围内的连续型变量,并且实现了对样本整体某种形式的归一化。
常见的回归方法应用至比例数据时可能存在局限性
常规的线性回归假定响应变量服从正态分布。比例数据是连续型的数值变量,并且有时一些比例数据也表现出良好的正态分布,似乎可以通过线性回归进行分析,并将获得较合理参数估计以及显著性水平。但更多时候,数值分布大都存在较高的偏离正态性程度,使得线性回归分析比例数据的结果并不理想,回归系数和p值等比较糟糕,变量的生物学意义难以解释。并且基于正态分布的线性回归得出的预测值和置信区间很可能包含比例数据定义区间外的值,即拟合出区间(0, 1)范围外的偏离实际的值。
某些比例数据来自计数型数值的转换。如在群落研究中调查物种丰度时,观察到的物种个体数量是离散型的非负整数,对计数型物种丰度数据的建模,通常泊松回归或负二项回归是优先考虑的。但有时出于特定需要,可能会转换为物种相对丰度(物种个体数量/群落物种总数)用于后续统计分析,此时泊松或负二项回归的局限在于无法应用至小数数值的比例数据中。
比例数据可以为概率响应(如试验成功的概率),有时形似二项分布试验,容易联想到基于二项分布的logistic回归。但logistic回归要求响应变量为0-1的二分型或非数值的类别型,故不适合连续数值的比例数据分析。
beta分布与beta回归
beta回归是一种分析比例数据的出色替代方案,其假定响应变量服从beta分布,对于分布在区间(0, 1)范围内的连续型响应变量的建模非常有用。
beta分布
首先来看beta分布,具有beta分布的变量的值是介于0到1之间的连续变量,beta分布的密度函数为:
式中p>0且q>0,Γ(·)是伽马函数(gamma function),beta分布密度函数的均值E(y)和方差var(y)分别为:
beta分布的密度曲线随均值和方差参数的变化而呈现出许多不同的形状。如下所示了几种代表样式,变量的所有值介于0到1之间,并且分布形状覆盖了各异的均值和离散度水平,而实际上很多生物学数据的变量分布都具有这种beta分布状态的特点。因此,beta分布覆盖面相当广,基于beta分布的beta回归在很多实际问题中有着广泛的应用。
也可以看到,beta分布中某些状态大致与正态分布相同,例如A样式。常规的线性回归假定响应变量服从正态分布,对于呈现A样式beta分布的响应变量,或许可以通过一般线性回归进行参数估计。但若是D、E、F这种,线性回归将会产生较大的偏差。
beta回归
因此,在回归分析中,若响应变量为比例数据,引进beta回归模型进行统计分析顺其自然,并且beta回归模型通常能够较好地对其进行拟合。
beta分布是指数分布族的一员,推广到广义线性模型中就是beta回归。若响应变量Y服从beta分布,则对于给定的一组自变量xiT(xt1, …, xti),Y的条件均值ut可写作广义线性回归模型:
βi为各自变量xti的回归系数。连接函数g(.)存在多种选择,一个最为常见的连接函数是logit连接(logit link),在这种情况下:
xiT即各自变量(xt1, …, xti