缩写:
- NN: neural network, 神经网络
- MSE: Mean Squared Error, 均方误差
- CEE: Cross Entropy Error, 交叉熵误差.(此缩写不是一个conventional缩写)
标记符号:
- net 或 neti , 净输出值, net=wTx
- a 或 ai , 神经元的激活函数输出值: a=f(net)
本文所有的
x
都是增广后的, 即
x0=1
.
Introduction
MSE与CEE是两种常用的loss function, 它们在形式上很不一样, 但在使用梯度下降算法学习最优参数时, 会发现它们其实是殊途同归.
很多机器学习算法都可以转换成浅层神经网络模型(本文中特指全连接的MLP). 而神经网络的BP算法(BP算法也是梯度下降算法)最核心的一步就是计算敏感度(见BP), 采用不同损失函数和激活函数的NN在BP算法上的差异也主要存在于敏感度上. 所以将有监督机器学习算法转化为神经网络模型后, 只需要计算出输出神经元的敏感度就可以看出MSE与CEE之间的很多异同点.
在利用mini-batch SGD训练神经网络时, 通常是先计算批次中每一个样本产生的梯度, 然后取平均值. 所以接下来的分析中, 只关注单个训练样本产生的loss. 根据这个loss计算敏感度.
使用MSE的典型代表是线性回归, 使用CEE的代表则是逻辑回归. 这两个算法的一些相同点与不同点可以参考blog.
问题描述:
- 给定:
- 训练集 D={(x(1),y(1)),…,(x(i),y(i)),…,(x(N),y(N))} , x(N)∈χ , χ:Rd , y(i)∈R
- model family f(x)
- 目标: 利用 D 学习一个具体的 f(x) 用于对新样本 x′ 进行预测: y′=f(x′)
注意, 线性回归的 f(x)与y 取的是连续值, 而逻辑回归则是代表类别的离散值.
均方误差---线性回归
线性回归使用均方误差(Mean Squared Error, MSE)作为loss function.
将线性回归问题
f(x)=wTx
转换成神经网络模型:
- 输入层: d 个神经元, d 为 x 的维度.
- 输出层: 1 个神经元, 激活函数为identical, 即 a=net=wTx .
- 隐层: 无
在样本
(x,y)
上的损失:
输出神经元的敏感度:
交叉熵---逻辑回归
逻辑回归使用最大似然方法估计参数.
二分类逻辑回归
先说二分类逻辑回归, 即
y={0,1}
. 将它转换成神经网络模型, 拓扑结构与线性回归一致. 不同的是输入神经元的激活函数为
a=sigmoid(net)
. 把
a
看作
y=1
的概率值:
P(y=1|x)=a
. 分类依据是根据选择的阈值, 例如
0.5
, 当
a
不小于它时
y=1
, 否则
y=0
.
样本
(x,y)
出现的概率, 即likelihood function:
log-likelihood:
最大化 L(w) 就是最小化 −L(w) , 所以它的loss为:
这实际上就是二分类问题的交叉熵loss. 如 blog所示, 当 a=0.5 时, loss最大.
输出神经元的敏感度:
相信你已经看出来了, 线性回归NN的敏感度 net−y 实际上也是激活值与目标值的差. 也就是说, 虽然逻辑回归与线性回归使用了不同的loss function, 但它们俩反向传播的敏感度在形式上是一致的, 都是激活值 a 与目标值 y 的差值.
多分类逻辑回归
先将多分类逻辑回归转换成神经网络模型:
- 输入层: 同上
- 输出层: 有多少种类别, 就有多少个输出神经元. 用 C 来表示类别数目, 所以输出层有 C 个神经元. 激活函数为softmax函数. 输出值和二分类逻辑回归一样被当成概率作为分类依据.
- 隐层: 无
依然只考虑单个样本
(x,y)
.
y
的预测值
f(x)
为输出值最大的那个神经元代表的类别, 即:
而第 i 个输出神经元的激活值为:
它代表 x 的类别为 i 的概率.
为方便写出它的似然函数, 先将 y 变成一个向量:
其中,
它实际上代表第 i 个神经元的目标值.
所以样本 (x,y) 出现的概率, 即它的似然函数为:
注意, 这里的权值 W 已经是一个 C×d 的矩阵, 而不是一个列向量.
log似然函数:
从 L(W) 的长相也可以看出, 二分类的逻辑回归只是多分类逻辑回归的一种特殊形式. 也就是说, 二分类的逻辑回归也可以转换成有两个输出神经元的NN.
同样的, 最大化 L(w) 就是最小化 −L(w) , 所以它的loss为:
这是更一般化的交叉熵. 代入softmax函数, 即 aj=enetj∑Ck=1enetk , 得到:
第 i 个神经元的敏感度:
很神奇的一幕又出现了. 上面说过, 把目标值向量化后, yi=0,1 实际上代表第 i 个神经元的目标值. 所以, 在这里, 输出神经元的敏感度也是它的激活值与目标值的差值.
总结与讨论
主要结论:
- 以均方误差或交叉熵误差作为loss function的NN, 其输出层神经元的敏感度是它的激活值与目标值的差值
比较有用的by-product:
- 很多机器学习算法都可以转换成浅层神经网络模型
- softmax与sigmoid 函数的导数形式: s′=s(1−s)
- 最大似然估计的loss function 是交叉熵
- 深度学习中常用的softmax loss其实也是交叉熵.