sklearn.metrics.mean_absolute_error

  • 注意多维数组 MAE 的计算方法 *
>>> from sklearn.metrics import mean_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_absolute_error(y_true, y_pred)
0.5
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_absolute_error(y_true, y_pred)
0.75
>>> mean_absolute_error(y_true, y_pred, multioutput='raw_values')
array([0.5, 1. ])
>>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7])
... 
0.85...
In [34]: y_true = np.array([1,2,3,4,5,0,0,0,0,0])                                                          

In [35]: y_pred = np.array([1.1,2.2,3.1,4.1,5.1,0,0,0,0,0])                                                

In [36]: mean_absolute_error(y_true,y_pred)                                                                
Out[36]: 0.05999999999999996

In [37]: y_pred = np.array([1.1,2.2,3.1,4.1,5.1])                                                          

In [38]: y_true = np.array([1,2,3,4,5])                                                                    

In [39]: mean_absolute_error(y_true,y_pred)                                                                
Out[39]: 0.11999999999999993
  • multioutput='raw_values' 给出的是每列的 MAE
  • multioutput=[0.3, 0.7] 给出的是加了不同权重的每列的MAE

转载于:https://www.cnblogs.com/yaos/p/9878497.html

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值