sklearn.metrics.r2_score

R2_score是衡量模型拟合优度的指标,公式为1减去残差平方和与总偏差平方和的比值。当模型拟合良好时,R2接近1;模型拟合较差时,R2接近0。在sklearn库中,可以使用r2_score函数进行计算。
摘要由CSDN通过智能技术生成

R2 决定系数(拟合优度)

公式

R 2 ( y , y ^ ) = 1 − ∑ i = 0 n s a m p l e s − 1 ( y i − y ^ i ) 2 ∑ i = 0 n s a m p l e s − 1 ( y i − y ˉ i ) 2 R^2(y, \hat{y}) = 1-\frac{\sum_{i=0}^{n_{samples}-1} (y_{i}-\hat{y}_i)^2}{\sum_{i=0}^{n_{samples}-1} (y_{i}-\bar{y}_i)^2} R

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>