三角形周长最短问题_九年级数学,二次函数中三角形周长的最值问题,解题思路很重要...

博客聚焦二次函数中三角形周长的最值问题,介绍两种解题方法。一是将军饮马模型,通过抛物线对称性和三点共线求周长最小值;二是利用相似三角形或锐角三角函数,将周长转化为线段长度,用设点法求最值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

很多同学学习完“铅锤法”后,按照解题套路能很快解决二次函数中三角形面积的最值。但是,冷不丁的遇到二次函数中三角形周长的最值问题,却懵了,不知道如何下手,解决这类问题解题思路很重要。

4ad6192967d85664e9882a0d4fd4e4c0.png

1.将军饮马模型

例题1:如图,直线y=-x+3与x轴、y轴分别交于点B,点C,经过B,C两点的抛物线y=x^2+bx+c与x轴的另一个交点为A,顶点为P,点M为抛物线的对称轴上的一个动点.

(1)求该抛物线的解析式;

(2)当点M在x轴的上方时,求三角形ACM周长的最小值.

df7c8a1ac4f67b0c159d41deefdb6bb6.png

分析:(1)直线y=-x+3与x轴、y轴分别交于点B,点C,分别令x=0、y=0,求出点B、C的坐标,然后代入抛物线的解析式中,求出b、c的值,从而得到二次函数的解析式。

c6d55675468278ea191ea81ec8970d27.png

求二次函数解析式,可以利用待定系数法,有三种方法可供选择:(1)一般式;(2)顶点式;(3)交点式,主要看题目所给点的特征,选择不一样的方法。

(2)由抛物线的对称性可得AM=BM,点A(1,0),由三角形CAM周长=CA+AM+CM=根号10+BM+CM,则点B,点M,点C三点共线时,BM+CM有最小值为BC的长,即四边形COAM周长的最小值=根号10+BC,由勾股定理可求解.

502d115079b631cbff1cc1fb0b2227cc.png

本题求三角形周长的最小值,利用的为将军饮马模型,这也是周长最小值中比较简单的一种类型。

48139fec2f34ada042ed0017456b1884.png

2.相似三角形(转化法)

例题2:如图,在平面直角坐标系中,点A,B的坐标分别为(-4,0),(2,0),点C在y轴上,其坐标为(0,-3),抛物线经过点A,B,C.P为第三象限内抛物线上一动点.

(1)求该抛物线的解析式.

(2)连接AC,过点P作PD⊥AC,PE∥y轴交AC于点E,当△PDE的周长最大时,求P点的坐标和△PDE周长的最大值.

91f52354ec40370e4e686344abda5b10.png

分析:(1)由点A,B的坐标可设抛物线的交点式,再将点C代入即可。

d4aa88ef72f3a81afbb1ee280203e924.png

先证△PDE∽△AOC,推出△PDE的周长=PD+PE+DE=12/5PE,三角形的周长最值转化为线段最值,求出直线AC的解析式,利用设点法,表示出线段PE的长度,求出PE的最大值,即可写出点P坐标及△PDE周长的最大值。

5139a9248a020443b849fbaff54aa16e.png

利用相似三角形或者锐角三角函数将三角形的周长转化为某条线段的长度,然后再利用设点法表示出线段的长度,研究线段的最值从而得到三角形周长的最值,这也是求三角形周长最值很常用的一种方法。

<think>好的,我现在需要帮用户解决如何用Python编写计算三角形面积和周长的程序。用户已经提到了使用海伦公式,并且参考了站内的几个引用内容,我需要把这些信息整合起来,给出一个清晰的步骤和代码。 首先,用户的问题明确:输入三边长度,计算周长和面积,保留两位小数。同时,需要确保输入的三边能构成三角形,否则给出提示。根据引用中的内容,判断三角形是否有效的条件应该是任意两边之和大于第三边,但用户提供的引用[2]里的条件是a + b > c > a - b,这可能是一种简化的写法,可能只检查了一个边的情况,但实际上正确的条件应该是三个边都满足两边之和大于第三边。不过,用户提供的代码示例中使用了a + b > c > a - b,这可能是因为输入时已经固定了c的顺序?或者可能存在错误。需要指出正确的三角形判断条件。 接下来,我需要确保用户知道如何正确判断三角形是否有效。正确的条件应该是:任意两边之和大于第三边,即a + b > c,a + c > b,b + c > a。而用户提供的引用[2]中的条件可能不够全面,只检查了其中一个组合。因此,在编写代码时,应该检查所有三个条件,或者对输入的三边进行排序,使得c是大的边,然后只需检查a + b > c。这样可以减少判断次数。例如,将三边排序后,大的边放在后,然后只需判断前两个边的和是否大于大的边。 然后是计算周长和面积。周长就是三边之和,而面积使用海伦公式,即先计算半周长p,然后用sqrt(p*(p-a)*(p-b)*(p-c))。需要注意导入math模块,或者使用**0.5来计算平方根。根据用户的引用示例,他们使用了math.sqrt,所以代码中应该导入math。 此外,输出需要严格保留两位小数,可以使用Python的格式化字符串,例如"%.2f"或者format函数。在用户提供的引用[2]中,输出使用了%f,但用户的问题保留两位小数,所以需要调整格式说明符为%.2f。 现在,整合这些步骤: 1. 输入三个边的长度,可能需要转换为浮点数。 2. 判断这三个边是否能构成三角形。正确的方法是检查所有三个组合,或者将三边排序后检查大的边是否小于另外两边之和。 3. 如果能构成,计算周长和面积,并保留两位小数输出。 4. 否则,输出不能构成三角形的提示。 可能的代码结构如下: - 输入三个边a, b, c,转为float类型。 - 检查三角形有效性:将三个边排序,然后判断a + b > c(假设c是大的)。 - 计算周长,半周长,然后面积。 - 格式化输出结果,保留两位小数。 同时,需要处理可能的输入错误,比如用户输入了非数字,但根据问题描述,测试用例保证数据有效,所以可能不需要处理异常。 现在,根据用户提供的引用[2]中的代码,他们的判断条件写的是a + b > c > a - b,这可能有问题,因为当c是大的边时,应该只需要判断a + b > c,而其他边的情况已经由排序保证。但原代码中的条件是否正确呢?例如,c > a - b是否多余?比如,假设c是大的边,那么a - b可能为负数,这时候c > a - b总是成立,所以条件可能等效于a + b > c。但为了准确,正确的条件应该是排序后判断大的边是否小于另外两边之和。因此,在代码中,应该先将三边排序,然后判断大的边是否小于其他两边之和。 所以,正确的步骤应该是: 输入三边a, b, c,然后转换为列表,排序,使得a, b, c按升序排列,这样c是大的。然后判断a + b > c。如果是,则可以构成三角形。 这比检查所有三个条件更高效,因为排序后只需要检查一次。 因此,在代码中,可以这样做: 将输入的三个数存入列表,排序后赋给a, b, c(升序),然后判断a + b > c。 例如: sides = [a, b, c] sides.sort() a, b, c = sides 然后判断a + b > c。 如果这个条件满足,那么其他条件自动满足,因为c已经是大的边,所以a + c > b 和 b + c > a 都成立,因为c >= b >= a,所以a + c >= a + b > c >= b,所以a + c > b成立,同理b + c > a也成立。因此,只需要判断a + b > c即可。 这样就能正确判断三角形是否有效。 然后计算周长,半周长,面积。 后,格式化输出,保留两位小数。 现在,将这些步骤转化为代码: 首先输入三个边,转换为浮点数: a = float(input("请输入第一条边长度:")) b = float(input("请输入第二条边长度:")) c = float(input("请输入第三条边长度:")) 然后将三个边排序: sides = [a, b, c] sides.sort() a_sorted, b_sorted, c_sorted = sides 判断a_sorted + b_sorted > c_sorted: if a_sorted + b_sorted > c_sorted: 计算周长和面积 else: 输出不能构成三角形 计算周长:perimeter = a + b + c (注意这里应该用原始的a, b, c,还是排序后的?周长是三个边之和,不管顺序,所以可以用原始的或排序后的,结果一样) 但是,在排序后,a_sorted, b_sorted, c_sorted是排序后的,而原始的变量可能已经改变了,所以需要注意。例如,原来的a, b, c可能被重新赋,因此可能需要用排序后的变量来计算周长,或者直接使用sum(sides)。或者,在排序前保存原始? 例如: original_a = a original_b = b original_c = c 或者,直接使用sum(sides)作为周长,因为排序后的三个数的和等于原来的三个数的和。 所以,周长可以计算为sum(sides) = a_sorted + b_sorted + c_sorted,等同于原始的三个数之和。 半周长p = sum(sides) / 2 面积则是math.sqrt(p*(p - a_sorted)*(p - b_sorted)*(p - c_sorted)) 然后输出周长和面积,保留两位小数。 因此,完整的代码可能如下: import math a = float(input("请输入第一条边长度:")) b = float(input("请输入第二条边长度:")) c = float(input("请输入第三条边长度:")) # 将三边排序 sides = [a, b, c] sides.sort() a_sorted, b_sorted, c_sorted = sides if a_sorted + b_sorted > c_sorted: perimeter = a + b + c # 或者使用sum([a, b, c]) p = perimeter / 2 area = math.sqrt(p * (p - a) * (p - b) * (p - c)) # 这里可能需要用排序后的边吗? # 不,海伦公式中参数的顺序无关,因为乘法是交换的,所以用原始边或排序后的边都可以 print(f"周长:{perimeter:.2f}") print(f"面积:{area:.2f}") else: print("无法构成三角形") 不过,这里有一个问题:在计算面积时,p*(p - a)*(p - b)*(p - c)中的a, b, c是否是排序后的?因为如果用户输入的边没有按顺序,比如c不是大的,那么p - c可能是负数,导致平方根出错。但根据之前的判断,我们已经确定三边可以构成三角形,所以p - a, p - b, p - c都应该为正数吗?或者是否应该使用排序后的边来计算? 实际上,海伦公式中的p是半周长,而每个(p - a), (p - b), (p - c)都必须为正数,否则乘积为负,无法计算平方根。所以在判断三角形有效后,这三个项都应该是正数。因此,不管是否排序,只要三角形有效,海伦公式中的乘积就会是非负的,所以可以安全地计算平方根。因此,在代码中,可以使用原始输入的a, b, c来计算面积,因为无论如何,只要通过三角形判断,这些都是有效的。 但为了保险起见,或许应该使用排序后的边,因为已经确保了c_sorted是大的边,这样在计算p - c_sorted时,可能出现负数吗?例如,当三边是3,4,5,排序后是3,4,5,p = (3+4+5)/2=6,p -5=1>0。因此,在判断条件a_sorted + b_sorted > c_sorted的情况下,c_sorted < a_sorted + b_sorted,而根据三角形不等式,每个边都小于另外两边之和,因此每个边都小于半周长,所以p - a, p - b, p - c 都是正数。所以,无论使用原始边还是排序后的边,结果都是正确的。因此,在计算面积时,可以使用原始的a, b, c。 但用户提供的引用[2]中的代码并没有排序,而是直接使用输入的a, b, c,并且判断条件为a + b > c > a - b。这可能存在问题,因为当c不是大的边时,这个条件可能无法正确判断。例如,假设输入的边是5, 1, 2,那么大的边是5,但是原代码中的条件可能判断错误,因为a=5, b=1, c=2,此时a + b =6 > c=2,但显然这三个边无法构成三角形,因为1 + 2 =3 <5。所以,原代码中的判断条件可能不正确,因为未排序的情况下,直接判断a + b > c可能当c不是大的边时,导致错误的判断。因此,正确的做法是先将三边排序,然后判断大的边是否小于其他两边之和。 因此,在用户提供的引用[2]中的代码可能存在错误,所以在我的回答中需要正确判断三角形有效性,即通过排序后检查大的边是否小于另外两边之和。 因此,正确的判断条件应该是在排序后检查a_sorted + b_sorted > c_sorted。 因此,在代码中,排序是必要的步骤,以确保大的边是c_sorted。 现在,回到代码部分,正确的判断条件已经处理,那么计算面积时是否可以使用原始输入的a, b, c? 是的,因为无论顺序如何,海伦公式的结果都是相同的,因为乘法是交换的。例如,p*(p - a)*(p - b)*(p - c)不管a, b, c的顺序如何,结果都是一样的。因此,使用原始输入的a, b, c进行计算是正确的。 因此,代码中的面积计算可以写成: p = (a + b + c) / 2 area = math.sqrt(p * (p - a) * (p - b) * (p - c)) 这样更直观,因为用户输入的是a, b, c,而不是排序后的。 因此,综合起来,正确的代码应该是: import math a = float(input("请输入第一条边长度a: ")) b = float(input("请输入第二条边长度b: ")) c = float(input("请输入第三条边长度c: ")) # 判断能否构成三角形 sides = [a, b, c] sides.sort() a_sorted, b_sorted, c_sorted = sides # 排序后c_sorted是大的边 if a_sorted + b_sorted > c_sorted: perimeter = a + b + c p = perimeter / 2 area = math.sqrt(p * (p - a) * (p - b) * (p - c)) print(f"周长:{perimeter:.2f}") print(f"面积:{area:.2f}") else: print("不能构成三角形") 这样就能正确判断并计算了。 现在,关于格式化输出,用户要严格保留两位小数。在Python中,可以使用format函数或者f-string,如上面的代码示例所示,使用:.2f来格式化。 总结步骤: 1. 输入三条边并转为浮点数。 2. 将边排序,确保大的边在后。 3. 判断前两条边的和是否大于大的边。 4. 如果是,计算周长和面积,否则提示无法构成。 5. 输出结果保留两位小数。 此外,用户提供的引用[2]中的判断条件可能存在问题,所以需要纠正这一点,确保使用排序后的边来正确判断。 后,测试一下代码是否正确。例如,输入3,4,5,周长应为12,面积6。代码输出应为周长12.00,面积6.00。再比如,输入2,2,3,判断条件成立,周长7.00,面积用海伦公式计算正确。如果输入1,2,3,排序后为1,2,3,1+2=3不大于3,所以无法构成三角形。 现在,用户的问题已经解决,接下来需要生成相关问题,根据系统指令的第六点,生成相关问题。 相关问题可能涉及如何优化判断条件,如何处理非数字输入,或者海伦公式的其他应用,以及三角形的其他性质等。</think>### Python计算三角形面积和周长的实现步骤 1. **输入处理** 通过`input()`函数获取三条边长度,并转换为浮点型: ```python a = float(input("请输入第一条边长度a: ")) b = float(input("请输入第二条边长度b: ")) c = float(input("请输入第三条边长度c: ")) ``` 2. **三角形有效性验证** 将三边排序后验证是否满足三角形不等式定理[^2]: ```python sides = [a, b, c] sides.sort() a_sorted, b_sorted, c_sorted = sides if a_sorted + b_sorted > c_sorted: # 计算周长和面积 else: print("不能构成三角形") ``` 3. **周长与面积计算** - 周长公式:$C = a + b + c$ - 海伦公式: $$ p = \frac{a+b+c}{2}, \quad S = \sqrt{p(p-a)(p-b)(p-c)} $$ 代码实现: ```python perimeter = a + b + c p = perimeter / 2 area = math.sqrt(p * (p - a) * (p - b) * (p - c)) ``` 4. **格式化输出** 使用`f-string`保留两位小数: ```python print(f"周长:{perimeter:.2f}") print(f"面积:{area:.2f}") ``` ### 完整代码 ```python import math a = float(input("请输入第一条边长度a: ")) b = float(input("请输入第二条边长度b: ")) c = float(input("请输入第三条边长度c: ")) sides = [a, b, c] sides.sort() a_sorted, b_sorted, c_sorted = sides if a_sorted + b_sorted > c_sorted: perimeter = a + b + c p = perimeter / 2 area = math.sqrt(p * (p - a) * (p - b) * (p - c)) print(f"周长:{perimeter:.2f}") print(f"面积:{area:.2f}") else: print("不能构成三角形") ``` ### 注意事项 - 输入需为有效数字,且能构成三角形(测试用例已保证)[^3]。 - 海伦公式要三边满足三角形不等式,否则平方根内可能出现负数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值