三角形周长最短问题_初中数学最短路径问题总结

本文总结了初中数学中的12个最短路径问题,涉及直线上的点、对称性、三角形周长和费马点。通过构造和几何性质,找出使路径、周长或距离之和最小或最大的点的位置,包括将军饮马问题、造桥选址问题和费马点的构造与证明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、十二个基本问题概述

问题一:在直线 l 上求一点 P,使得 PA + PB 值最小 .

d38d2a9111bd77cc21e30753ea51e682.png

作法:连接 AB,与直线 l 的交点即为 P 点 .

da30dfc7611d54cc5fd7266880d2d2aa.png

原理:两点之间线段最短 . PA + PB 最小值为 AB .

问题二:(“将军饮马问题”)在直线 l 上求一点 P,使得 PA + PB 值最小 .

09542560d3ec4441eec292c3468a2d81.png

作法:作点 B 关于直线 l 的对称点 B',连接 AB' 与 l 的交点即为点 P.

6661f63008c9b1fe0ef073f278bca71e.png

原理:两点之间线段最短. PA + PB 最小值为 AB' .

问题三:在直线 l1、l2 上分别求点 M、N,使得 △PMN 的周长最小.

61ee26fb57fa5f0e75d01bd630462a33.png

作法:分别作点 P 关于两条直线的对称点 P' 和 P'',连接 P'P'',与两条直线的交点即为点 M,N.

3f7d910ab8100aa6040195c517857185.png

原理:两点之间线段最短. PM + MN + PN 的最小值为线段 P'P'' 的长.</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值