三角形周长最短问题_什么样的三角形周长最短

展开全部

面积相等时,等边三角形周长最短。

设三角形面积为S,周长为62616964757a686964616fe78988e69d8331333366306466C=2p=a+b+c,易知三角形与面积关系(可作定理):S的平方=p(p-a)(p-b)(p-c)。

则有S的平方=p(p-a)(p-b)(p-c)≤{(1/4)*[p+(p-a)+(p-b)+(p-c)]}^4

=[(1/4)*(4p-a-b-c)]^4

=[(1/4)*C]^4

=(1/16)*C^4

即C≥根号(4*S),当p=p-a=p-b=p-c时等号成立,C取得最小值,此时a=b=c。所以答案为等边三角形。

5ed69d5a93b9913e91a692ae6eac1f9a.png

扩展资料

环绕有限面积的区域边缘的长度积分,叫做周长,也就是图形一周的长度。周长用字母C表示。公式:

1、圆:C=πd=2πr(d为直径,r为半径)。

2、三角形:C = a+b+c(abc为三角形的三条边)。

3、四边形:C=a+b+c+d(abcd为四边形的边长)。

4、特别的:长方形:C=2(a+b)(a为长,b为宽)。

5、正方形:C=4a(a为正方形的边长)。

6、多边形:C=所有边长之和。

7、扇形:C = 2R+nπR÷180˚(n=圆心角角度)= 2R+kR(k=弧度)。

如果以同一面积的三角形而言,以等边三角形的周界最短; 如果以同一面积的四边形而言,以正方形的周界是最短; 如果以同一面积的五边形而言,以正五边形的周界最短; 如果以同一面积的任意多边形而言,以正圆形的周界最短。

参考资料来源:百度百科:周长

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值