希尔伯特空间基本理论及其应用

$\bf(变分引理)$设$M$为$\bf{Hilbert}$空间$X$上的凸闭集,$x\in X$,记$d$到$M$的距离\[d = d\left( {x,M} \right) = \mathop {inf}\limits_{y \in M} \left\| {x - y} \right\|\]则存在唯一的最佳逼近点${x_0}\in M$,使得$\left\| {x - {x_0}} \right\| = d$

方法一

$\bf(投影定理)$设$M$为$\bf{Hilbert}$空间$X$上的闭线性子空间,则对任意$x\in X$,存在唯一的$x_0\in M$,${x_1} \in {M^ \bot }$,使得$$x = {x_0} + {x_1}$$

方法一  方法二

$\bf(Riesz表示定理)$设$f$为$\bf{Hilbert}$空间$X$上的连续线性泛函,则存在唯一的$y\in X$,使得对任意的$x\in X$,有$$f\left( x \right) = \left( {x,y} \right)$$且$\left\| f \right\| = \left\| y \right\|$.于是由$f$到$y$给出了${X^*}$到$X$的一个等距同构

方法一

$\bf(有限维投影引理)$设$\left\{ {{e_i}} \right\}_{i = 1}^n$为$\bf{Hilbert}$空间$X$上的标准正交系,记\[M = span\left\{ {{e_1},{e_2}, \cdots ,{e_n}} \right\},x \in X\]则${x_0} = \sum\limits_{i = 1}^n {\left( {x,{e_i}} \right){e_i}} $是$x$在$M$上 的投影,且\[{\left\| {{x_0}} \right\|^2}{\rm{ = }}\sum\limits_{i = 1}^n {{{\left| {\left( {x,{e_i}} \right)} \right|}^2}} \]

方法一

$\bf(Bessel不等式)$设$\left\{ {{e_i}} \right\}_{i = 1}^\infty $为$\bf{Hilbert}$空间$X$上的标准正交系,则对任意的$x\in X$,有\[\sum\limits_{i = 1}^\infty  {{{\left| {\left( {x,{e_i}} \right)} \right|}^2}}  \le {\left\| x \right\|^2}\]

方法一

$\bf(Riesz-Fischer定理)$设$\left\{ {{e_i}} \right\}_{i = 1}^\infty $为$\bf{Hilbert}$空间$X$上的标准正交系,则对任给$\left\{ {{c_i}} \right\} \in {l^2}$,存在$x\in X$,使得\[\left( {x,{e_i}} \right) = {c_i},i = 1,2, \cdots \]

方法一

$\bf(Riesz-Fischer定理)$

 

转载于:https://www.cnblogs.com/ly285714/p/3806753.html

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值