泛函分析基础9-2-投影定理1:凸集【若M是X的子集,对M中的任意两点x,y,必有[x,y]⊂M,则称M为X中的凸集】【{z=αx+(1−α)y:0⩽α⩽1}为X中联结点x和y的线段,记为[x,y]】

在内积空间和希尔伯特空间中,本文介绍了投影定理及其证明,特别是当子空间为完备凸集时,对于每个点存在唯一最近点的性质。此外,还讨论了正交补子空间和正交投影的概念,这些理论在函数逼近论和现代控制论中有广泛应用。
摘要由CSDN通过智能技术生成

X X X 是 度量空间, M M M X X X 的 非空子集, x x x X X X 中 一点,称

inf ⁡ y ∈ M d ( x , y ) \inf _ { y \in M } d ( x , y ) yMinfd(x,y)

为点 x x x M M M 的 距离,记为 d ( x , M ) . d ( x , M ) . d(x,M).

在赋范线性空间中,

d ( x , M ) = inf ⁡ y ∈ M ∥ x − y ∥ . ( 1 ) d ( x , M ) = \inf _ { y \in M } \| x - y \| .\quad\quad(1) d(x,M)=yMinfxy∥.(1)

在许多数学问题中(例如函数逼近论)常常会提出这样的问题:是否存在 y ∈ M , y \in M , yM, 使

d ( x , M ) = ∥ x − y ∥ , ( 2 ) d ( x , M ) = \| x - y \| ,\quad\quad(2) d(x,M)=xy,(2)

如果存在这样的 y , y , y, 是否唯一?

容易明白,如果不对 M M M 加上一些限制,即使在有限维欧氏空间中,对这个问题的回答也是不肯定的。

但当 M M M是内积空间中的完备凸子集时,对这个问题可以得到肯定的回答,为此,先介绍凸集的概念.

X X X 是 线性空间, x , y x , y x,y X X X 中 两点,称集合

{ z = α x + ( 1 − α ) y : 0 ⩽ α ⩽ 1 } \{ z = \alpha x + ( 1 - \alpha ) y : 0 \leqslant \alpha \leqslant 1 \} {z=αx+(1α)y:0α1}

X X X 中 联结点 x x x y y y 的线段,记为 [ x , y ] . [ x , y ] . [x,y].

如果 M M M X X X的 子集,对 M M M 中 的任意两点 x , y , x , y , x,y,必有 [ x , y ] ⊂ M , [ x , y ] \subset M , [x,y]M, 则称 M M M X X X 中 的凸集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值