根式函数

本文探讨了根式函数的性质和求解方法,包括代数换元法、三角换元法、函数性质法、导数法。通过具体例子展示了如何求解不同类型的根式函数的值域,如(f(x)=x-sqrt{2-x})、(f(x)=x+sqrt{1-x^2})等,并提供了解题反思和通用策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

根式函数一般指被开方数中含有自变量的函数,涉及到根式函数的性质的研究,我们常观察所给的根式函数的结构特征,可以考虑代数换元法或者三角换元法,函数性质法,分子或者分母有理化,数形结合法等;万一这些思路都失效时,就可以考虑借助终极方法[导数法]来解决。

典例剖析

例1求函数\(f(x)=x-\sqrt{2-x}\)的值域。

[法1]:代数换元法,先求定义域为\((-\infty,2]\)

\(\sqrt{2-x}=t\ge 0\),则\(x=2-t^2\),故原函数可以转化为\(f(x)=g(t)=2-t^2-t(t\ge0)=2-(t^2+t+\cfrac{1}{4})-\cfrac{1}{4}=\cfrac{9}{4}-(t+\cfrac{1}{2})^2\)

故在\([0,+\infty)\)上单调递减,\(f(x)_{max}=g(t)_{max}=g(0)=2\),故值域为\((-\infty,2]\)

[法2]:利用单调性,直接从函数解析式分析,

函数\(f(x)=x-\sqrt{2-x}\)在定义域\((-\infty,2]\)上单调递增,故\(f(x)_{max}=f(2)=2\)。故值域为\((-\infty,2]\)

解后反思:对于形如\(f(x)=ax+b\pm \sqrt{cx+d}\)型的函数求值域,用代数换元法总能将其转化为二次函数在限定区间上的值域问题,因此法1是通用方法;而法2的适用性有一定的限制。

例2求函数\(f(x)=x+\sqrt{1-x^2}\)的值域。

分析:求定义域得到\(x\in[-1,1]\),故做三角换元令

基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明,该项目是个人毕设项目,答辩评审分达到98分,代码都经过调试测试,确保可以运行!欢迎下载使用,可用于小白学习、进阶。该资源主要针对计算机、通信、人工智能、自动化等相关专业的学生、老师或从业者下载使用,亦可作为期末课程设计、课程大作业、毕业设计等。项目整体具有较高的学习借鉴价值!基础能力强的可以在此基础上修改调整,以实现不同的功能。 基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值