前言
根式函数一般指被开方数中含有自变量的函数,涉及到根式函数的性质的研究,我们常观察所给的根式函数的结构特征,可以考虑代数换元法或者三角换元法,函数性质法,分子或者分母有理化,数形结合法等;万一这些思路都失效时,就可以考虑借助终极方法[导数法]来解决。
典例剖析
例1求函数\(f(x)=x-\sqrt{2-x}\)的值域。
[法1]:代数换元法,先求定义域为\((-\infty,2]\),
令\(\sqrt{2-x}=t\ge 0\),则\(x=2-t^2\),故原函数可以转化为\(f(x)=g(t)=2-t^2-t(t\ge0)=2-(t^2+t+\cfrac{1}{4})-\cfrac{1}{4}=\cfrac{9}{4}-(t+\cfrac{1}{2})^2\),
故在\([0,+\infty)\)上单调递减,\(f(x)_{max}=g(t)_{max}=g(0)=2\),故值域为\((-\infty,2]\);
[法2]:利用单调性,直接从函数解析式分析,
函数\(f(x)=x-\sqrt{2-x}\)在定义域\((-\infty,2]\)上单调递增,故\(f(x)_{max}=f(2)=2\)。故值域为\((-\infty,2]\);
解后反思:对于形如\(f(x)=ax+b\pm \sqrt{cx+d}\)型的函数求值域,用代数换元法总能将其转化为二次函数在限定区间上的值域问题,因此法1是通用方法;而法2的适用性有一定的限制。
例2求函数\(f(x)=x+\sqrt{1-x^2}\)的值域。
分析:求定义域得到\(x\in[-1,1]\),故做三角换元令