复变函数论2-解析函数3-初等多值函数2-根式函数2:分出w=ⁿ√z的单值解析分支【单值连续分支函数:wₖ=(ⁿ√z)ₖ=[ⁿ√r(z)]exp[i(θ+2kπ)/n]】

本文介绍了复变函数论中如何为根式函数 w=nz 分出单值解析分支,通过定义2.9阐述了多值性的原因,并详细解释了在特定区域内如何建立单值连续分支函数,这些分支函数在指定区域内是解析的,并满足微分关系式dz/d(nz)^k=n^(-1)z*(nz)^k。
摘要由CSDN通过智能技术生成

定义 2.9

我们规定根式函数 w = z n w=\sqrt[n]{z} w=nz 为幂函数 z = w n z=w^{n} z=wn 的反函数 ( n (n (n 是大于 1 的整数).


Ⅱ、分出 w = z n w=\sqrt[n]{z} w=nz 的单值解析分支.

z = r e i θ z=r \mathrm{e}^{i \theta} z=reiθ 时, 函数

w = z n = r n e i θ + 2 k π n ( k = 0 , 1 , ⋯   , n − 1 ) w=\sqrt[n]{z}=\sqrt[n]{r} \mathrm{e}^{i\cfrac{\theta+2 kπ}{n}} \quad(k=0,1, \cdots, n-1) w=nz =nr einθ+2(k=0,1,,n1)

出现多值性的原因是由于 z z z 确定后, 其辐角并不惟一确定 (可以相差 2 π 2 \pi 2π的整数倍).

今在 z z z 平面上从原点 O O O 到点 ∞ \infty 任意引一条射线(一般取负实轴), 将 z z z 平面割破,割破了的 z z z平面构成一个以此割线为边界的区域,记为 G \color{red}{G} G (同时我们就用 G G G表示包含在割破了的 z z z 平面内的某一子区域).

G G G 内随意指定一点 z 0 z_{0} z0, 并指定 z 0 z_{0} z0 的一个辐角值. 则在 G G G 内任意的点 z z z, 皆可根据 z 0 z_{0} z0 的辐角,依连续变化而惟一确定 z z z 的辐角.

假定从原点起割破负实轴, C C C G G G 内过点 z 0 z_{0} z0 的一条简单闭曲线, 即 C C C 不穿过负实轴, 它的内部不包含原点 z = 0 z=0 z=0, 则当变点 z z z z 0 z_{0} z0 起绕 C 一 C 一 C 周时, z z z 的像点 w k = ( z n ) k w_{k}=(\sqrt[n]{z})_{k} wk=(nz )k

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值