复变函数论2-解析函数3-初等多值函数2-根式函数3-2:w=ⁿ√z的支割线【用来割破z平面,借以分出ⁿ√z的单值解析分支的割线,称为ⁿ√z的“支割线”】【从0到∞的任一条射线(如包含原点的负实轴)】

本文详细探讨了复变函数w=n√z中的支点与支割线概念。支点z=0和z=∞在函数连续变化一周后,会从一个分支变到另一个分支。支割线用于划分函数的单值解析分支,通常选取负实轴作为支割线。每个单值分支在支割线上不连续,但可以扩充为在支割线一侧连续的函数。此外,文章还介绍了函数w=n(z-a)的一般性质及其单值解析分支的确定方法。
摘要由CSDN通过智能技术生成

定义 2.9

我们规定根式函数 w = z n w=\sqrt[n]{z} w=nz 为幂函数 z = w n z=w^{n} z=wn 的反函数 ( n (n (n 是大于 1 的整数).


Ⅲ、 w = z n w=\sqrt[n]{z} w=nz 的支点及支割线.

1、支点

我们再分析一下, 如果不像上述办法割破 z z z 平面,则变点 z z z 就可以沿一条简单闭曲线 C ~ \widetilde{C} C (如图 2.6) 变化.

在这里插入图片描述
z 0 z_{0} z0 C ~ \widetilde{C} C 上某一个点, C ~ \widetilde{C} C 包含原点 z = 0 z=0 z=0 在其内部. 这时, C ~ \widetilde{C} C 穿过负实轴。

于是, 当变点 z z z z 0 z_{0} z0 出发,循正(㑔)方向绕 C ~ \widetilde{C} C 一周后, z 0 z_{0} z0 的辐角已经增 (减)了 2 π 2 \pi 2π z z z 的像点 w k = ( z n ) k w_{k}=(\sqrt[n]{z})_{k} wk=(nz )k 就不可能回到它们原来的位置 w k ( 0 ) ( w 0 ( 0 ) = w 0 ) w_{k}^{(0)}\left(w_{0}^{(0)}=w_{0}\right) wk(0)(w0(0)=w0), 而是沿如图 2.6中 虚线路径, 从一支变到另一支:
在这里插入图片描述
这样一来, 在包含或包围着原点 z = 0 z=0 z=0 的区域 D D D 内, 我们不可能把 w = z n w=\sqrt[n]{z} w=nz 分成 n n n 个独立的单值解析分支.而现在,这些分支好像在原点 z = 0 z=0 z=0 连接起来,抖不散了.

原点 z = 0 z=0 z=0 ――― 在此点的充分小邻域内, 作一个包围此点的圆周 Γ \Gamma Γ, 当变点 z z z Γ \Gamma Γ上一点出发, 绕 Γ \Gamma Γ 连续变动一周而回到其出发点时, z n \sqrt[n]{z} nz 从其一支变到另外一支一我们称它为 z n \sqrt[n]{z} nz 支点.

z = ∞ z=\infty z= 也具有 z = 0 z=0 z=0 所具有的类似性质, 也称为 z n \sqrt[n]{z} n

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值