Highway Networks Pytorch

导读

本文讨论了深层神经网络训练困难的原因以及如何使用Highway Networks去解决深层神经网络训练的困难,并且在pytorch上实现了Highway Networks。

一 、Highway Networks 与 Deep Networks 的关系

深层神经网络相比于浅层神经网络具有更好的效果,在很多方面都已经取得了很好的效果,特别是在图像处理方面已经取得了很大的突破,然而,伴随着深度的增加,深层神经网络存在的问题也就越大,像大家所熟知的梯度消失问题,这也就造成了训练深层神经网络困难的难题。2015年由Rupesh Kumar Srivastava等人受到LSTM门机制的启发提出的网络结构(Highway Networks)很好的解决了训练深层神经网络的难题,Highway Networks 允许信息高速无阻碍的通过深层神经网络的各层,这样有效的减缓了梯度的问题,使深层神经网络不在仅仅具有浅层神经网络的效果。

二、Deep Networks 梯度消失/爆炸(vanishing and exploding gradient)问题

我们先来看一下简单的深层神经网络(仅仅几个隐层)

先把各个层的公式写出来

7Adf9NF.jpg

我们对W1求导:

rxT0zaw.jpg

W = W - lr * g(t)

以上公式仅仅是四个隐层的情况,当隐层的数量达到数十层甚至是数百层的情况下,一层一层的反向传播回去,当权值 < 1的时候,反向传播到某一层之后权值近乎不变,相当于输入x的映射,例如,g(t) =〖0.9〗^100已经是很小很小了,这就造成了只有前面几层能够正常的反向传播,后面的那些隐层仅仅相当于输入x的权重的映射,权重不进行更新。反过来,当权值 > 1的时候,会造成梯度爆炸,同样是仅仅前面的几层能更改正常学习,后面的隐层会变得很大。

三、Highway Networks Formula

  • Notation

    (.) 操作代表的是矩阵按位相乘

    sigmoid函数:
    7bKT6P0.jpg

  • Highway Networks formula

    对于我们普通的神经网络,用非线性激活函数H将输入的x转换成y,公式1忽略了bias。但是,H不仅仅局限于激活函数,也采用其他的形式,像convolutional和recurrent。

    3Skg3Fz.jpg

    对于Highway Networks神经网络,增加了两个非线性转换层,一个是 T(transform gate) 和一个是 C(carry gate),通俗来讲,T表示输入信息经过convolutional或者是recurrent的信息被转换的部分,C表示的是原始输入信息x保留的部分 ,其中 T=sigmoid(wx + b)

    qmBC9zM.jpg

    为了计算方便,这里定义了 C = 1 - T

    JybabV1.jpg

    需要注意的是x,y, H, T的维度必须一致,要想保证其维度一致,可以采用sub-sampling或者zero-padding策略,也可以使用普通的线性层改变维度,使其一致。

    几个公式相比,公式3要比公式1灵活的多,可以考虑一下特殊的情况,T= 0的时候,y = x,原始输入信息全部保留,不做任何的改变,T = 1的时候,Y = H,原始信息全部转换,不在保留原始信息,仅仅相当于一个普通的神经网络。

    aa

四、Highway BiLSTM Networks

  • Highway BiLSTM Networks Structure Diagram
    下图是 Highway BiLSTM Networks 结构图:
    input:代表输入的词向量
    B:在本任务代表bidirection lstm,代表公式(2)中的 H
    T:代表公式(2)中的 T,是Highway Networks中的transform gate
    C:代表公式(2)中的 C,是Highway Networks中的carry gate
    Layer = n,代表Highway Networks中的第n层
    Highway:框出来的代表一层Highway Networks
    在这个结构图中,Highway Networks第 n - 1 层的输出作为第n层的输入
    KzfE2Tc.jpg

  • Highway BiLSTM Networks Demo
    pytorch搭建神经网络一般需要继承nn.Module这个类,然后实现里面的forward()函数,搭建Highway BiLSTM Networks写了两个类,并使用nn.ModuleList将两个类联系起来:


    class HBiLSTM(nn.Module):
    def init(self, args):
    super(HBiLSTM, self).__init__()
    ......
    def forward(self, x):
    # 实现Highway BiLSTM Networks的公式
    ......


    class HBiLSTM_model(nn.Module):
    def init(self, args):
    super(HBiLSTM_model, self).__init__()
    ......
    # args.layer_num_highway 代表Highway BiLSTM Networks有几层
    self.highway = nn.ModuleList([HBiLSTM(args) for _ in range(args.layer_num_highway)])
    ......
    def forward(self, x):
    ......
    # 调用HBiLSTM类的forward()函数
    for current_layer in self.highway:
    x, self.hidden = current_layer(x, self.hidden)

    HBiLSTM类的forward()函数里面我们实现Highway BiLSTM Networks的的公式
    首先我们先来计算H,上文已经说过,H可以是卷积或者是LSTM,在这里,normal_fc就是我们需要的H

    x, hidden = self.bilstm(x, hidden)
    # torch.transpose是转置操作
    normal_fc = torch.transpose(x, 0, 1)

    上文提及,x,y,H,T的维度必须保持一致,并且提供了两种策略,这里我们使用一个普通的Linear去转换维度


    source_x = source_x.contiguous()
    information_source = source_x.view(source_x.size(0) * source_x.size(1), source_x.size(2))
    information_source = self.gate_layer(information_source)
    information_source = information_source.view(source_x.size(0), source_x.size(1), information_source.size(1))

    也可以采用zero-padding的策略保证维度一致

    # you also can choose the strategy that zero-padding
    zeros = torch.zeros(source_x.size(0), source_x.size(1), carry_layer.size(2) - source_x.size(2))
    source_x = Variable(torch.cat((zeros, source_x.data), 2))

    维度一致之后我们就可以根据我们的公式来写代码了:

    # transformation gate layer in the formula is T
    transformation_layer = F.sigmoid(information_source)
    # carry gate layer in the formula is C
    carry_layer = 1 - transformation_layer
    # formula Y = H * T + x * C
    allow_transformation = torch.mul(normal_fc, transformation_layer)
    allow_carry = torch.mul(information_source, carry_layer)
    information_flow = torch.add(allow_transformation, allow_carry)

    最后的information_flow就是我们的输出,但是,还需要经过转换维度保证维度一致。
    更多的请参考Github: Highway Networks implement in pytorch

五、Highway BiLSTM Networks 实验结果

本次实验任务是使用Highway BiLSTM Networks 完成情感分类任务(一句话的态度分成积极或者是消极),数据来源于Twitter情感分类数据集,以下是数据集中的各个标签的句子个数:
FNQ3Kkr.jpg

下图是本次实验任务在2-class数据集中的测试结果。图中1-300在Highway BiLSTM Networks中表示Layer = 1,BiLSTM 隐层的维度是300维。
mmBj4so.jpg

实验结果:从图中可以看出,简单的多层双向LSTM并没有带来情感分析性能的提升,尤其是是到了10层之后,效果有不如随机的猜测。当用上Highway Networks之后,虽然性能也在逐步的下降,但是下降的幅度有了明显的改善。

References

转载于:https://www.cnblogs.com/bamtercelboo/p/7611380.html

highway_env是一个用于创建和测试自动驾驶智能体的Python库。它旨在提供一个可扩展的环境,用于开发和评估各种自动驾驶算法。 highway_env提供了一个高速公路环境,其中包括多车道、交通流量、车辆状态和路标等元素。该库提供了一些基本的环境配置选项,例如车道宽度、车辆速度、车辆密度等,以帮助用户创建符合实际情况的测试场景。 在使用highway_env进行自动驾驶智能体开发时,用户可以通过编程和配置文件来设置环境参数,例如目标速度、道路长度、交通流量分布等。智能体可以通过接受环境状态和奖励信号来决定自己的行动,并通过交互与环境进行学习和优化。 高速公路环境中的多车道和交通流量使得智能体需要学习适应不同的交通状况,并在保持安全的同时尽可能快地到达目的地。因此,highway_env非常适合用于测试各种自动驾驶技术的性能和鲁棒性。 此外,highway_env还提供了一系列实用的函数和方法来帮助用户进行环境和智能体参数的配置、数据记录、可视化等。这些功能大大简化了自动驾驶算法的开发和调试过程,提高了开发效率。 总之,highway_env是一个功能强大的Python库,可以提供可扩展的高速公路环境,用于开发和评估自动驾驶智能体。通过使用highway_env,用户可以方便地创建各种测试场景,并进行自动驾驶算法的开发和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值