SPSS多元线性回归数据解读

前文我们总结了SPSS安装流程和多元线性回归操作案例:

链接如下:

SPSS安装:保姆级SPSS图文安装教程_追忆苔上雪的博客-CSDN博客

SPSS多元线性回归操作案例:SPSS多元线性回归操作入门实例_追忆苔上雪的博客-CSDN博客

接下来针对多元线性回归后的数据进行解读

(1)模型摘要

这个表是为了看模型的拟合度,关注R方和调整后R方,越接近1拟合度越好。

但是R方小,也不能完全说明方程拟合的不好,R方与也有关系,所以一般不把R方作为决定性的指标。有的方程Y变化较小,主要是X在变化,直线方程和X轴近乎平行时,这时拟合的方程R2会很小,但是方程显著。所以不能完全用R方来衡量方程拟合的效果。

德宾沃森检验若结果在0-4之间,基本可认为数据独立性符合。本例的德宾沃森值为1.37,符合独立性。

(2)ANOVA

这个表是为了看模型整体的显著性,关注F值和显著性。显著性是F检验的p值,通常小于0.05我们认为模型整体显著。

上面我们看到R方比较小,这里我的样本数量小,所以方小也是原因之一,主要还是看方程的显著性,方程显著性是满足要求的,可以用

(3)系数

这个表是最终需要分析的系数表,B列是自变量的系数,显著性是T检验的p值,通常小于0.05,我们认为变量显著。

所以这个模型应该写成:

LAI=-20.228+42.272NDVI-14.985GNDVI-0.165RVI+0.000037MCARI+1.145Clre-6.411NRI

SPSS是一种常用的统计分析软件,其中的多元线性回归分析功能可以用于研究多个自变量对一个因变量的影响关系。当进行多元线性回归分析时,有时候需要排除一些变量,即在分析中不考虑这些变量对因变量的影响。 排除变量解读可以通过多元线性回归分析的输出结果来实现。首先,我们需要注意到SPSS输出表中的“模型摘要”一栏。其中的F值表示整个模型的显著性,如果F值的P值小于设定的显著性水平(通常为0.05),则可以认为整个模型有显著影响。如果整个模型不显著,那么我们无需进行后续的排除变量操作。 接下来,我们需要关注SPSS输出表中的“回归系数”的一栏。在这一栏中,我们可以看到自变量对因变量的回归系数和它们的显著性水平。如果某个自变量在回归模型中的回归系数不显著(通常P值大于0.05),那么我们可以排除这个自变量。这意味着在解读时,我们可以不考虑这个变量对因变量的影响。 在排除变量之后,我们可以重新运行多元线性回归分析,并且关注更新的模型摘要和回归系数。如果排除了某个变量之后,模型整体显著性提高了(F值的P值更小),或者新模型中的回归系数更加显著,那么我们可以认为排除该变量是有效的。 需要注意的是,排除变量不应该基于统计显著性的结果而盲目进行。我们还应该考虑理论基础和实际背景知识,以避免过度解读统计结果。因此,在解读多元线性回归模型时,需要综合考虑统计显著性和实际背景知识,充分理解模型的解释力和可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值