LM算法学习笔记(一)

LM算法,全称Levenberg-Marquardt algorithm,是解决非线性最小二乘问题的一种方法,是对标准最小二乘法的扩展,能够确保改进初始解决方案。该算法可以视为牛顿法的扩展,具有防止解的‘超调’的特性,并在解决复杂问题时表现出快速的收敛性。
摘要由CSDN通过智能技术生成

      LM算法全称为Levenberg-Marquard algorithm,在正式介绍该算法之前,我们需要先研读一下对该算法的发展有重要意义的几篇论文。首先,我们从LM算法的开篇之作(Levenberg于1944年发表)开始。

 

A method for the solution of certain non-linear problems in least squares

 

------------------------------------------------------------------------------------------------------------

引言部分:

The standard method for solving least squares problems which lead to non-linear normal equations depends upon a reduction of the residuals to linear form by first order Taylor approximations taken about an initial or trial solution for the parameters. If the usual least squares procedure, performed with these linear approximations, yields new values for the parameters which are

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值