pytorch1.0网络保存、提取、加载
import torch import torch.nn.functional as F # 包含激励函数 import matplotlib.pyplot as plt # 假数据 x = torch.unsqueeze(torch.linspace(-1,1,100),dim=1) # x data (tensor), shape=(100, 1) y = x.pow(2) + 0.2*torch.rand(x.size()) # noisy y data (tensor), shape=(100, 1) # The code below is deprecated in Pytorch 0.4. Now, autograd directly supports tensors # x, y = Variable(x, requires_grad=False), Variable(y, requires_grad=False) def save(): # save net1 # 建网络 net1 = torch.nn.Sequential( torch.nn.Linear(1, 10), torch.nn.ReLU(), torch.nn.Linear(10, 1) ) optimizer = torch.optim.SGD(net1.parameters(), lr=0.5) loss_func = torch.nn.MSELoss() # 训练 for t in range(100): prediction = net1(x) loss = loss_func(prediction, y) optimizer.zero_grad() loss.backward() optimizer.step() # plot result plt.figure(1, figsize=(10, 3)) plt.subplot(131) plt.title('Net1') plt.scatter(x.data.numpy(), y.data.numpy()) plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5) # 2 ways to save the net torch.save(net1, 'net.pkl') # save entire net # 保存整个网络 torch.save(net1.state_dict(), 'net_params.pkl') # save only the parameters # 只保存网络中的参数 (速度快, 占内存少) # 提取网络 def restore_net(): # restore entire net1 to net2 net2 = torch.load('net.pkl') prediction = net2(x) # plot result plt.subplot(132) plt.title('Net2') plt.scatter(x.data.numpy(), y.data.numpy()) plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5) # 只提取网络参数 def restore_params(): # 新建 net3 # restore only the parameters in net1 to net3 net3 = torch.nn.Sequential( torch.nn.Linear(1, 10), torch.nn.ReLU(), torch.nn.Linear(10, 1) ) # 将保存的参数复制到 net3 # copy net1's parameters into net3 net3.load_state_dict(torch.load('net_params.pkl')) prediction = net3(x) # plot result plt.subplot(133) plt.title('Net3') plt.scatter(x.data.numpy(), y.data.numpy()) plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5) plt.show() # 保存 net1 (1. 整个网络, 2. 只有参数) # save net1 save() # 提取整个网络 # restore entire net (may slow) restore_net() # 提取网络参数, 复制到新网络 # restore only the net parameters restore_params()