pytorch神经网络 训练好的模型保存提取

要点

训练好了一个模型, 我们当然想要保存它, 留到下次要用的时候直接提取直接用, 这就是这节的内容啦. 我们用回归的神经网络举例实现保存提取.

对整个网络保存

我们快速地建造数据, 搭建网络:

import torch
from torch.autograd import Variable
import matplotlib.pyplot as plt

#假数据
# unsqueeze对数据维度进行扩充
x = torch.unsqueeze(torch.linspace(-1,1,100),dim=1)
# print(x.size())
y = x.pow(2) + 0.2*torch.rand(x.size())
# print(y.shape)

def save():
    #建网络
    net1 = torch.nn.Sequential(
        torch.nn.Linear(1,10),
        torch.nn.ReLU(),
        torch.nn.Linear(10,1)
    )
    optimizer = torch.optim.SGD(net1.parameters(), lr=0.5)
    loss_func = torch.nn.MSELoss()
    
    #训练
    for t in range(100):
        predict = net1(x)
        loss = loss_func(predict,y)
        
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    
    plt.figure(1,figsize=(10,3))
    plt.subplot(121)
    plt.title("net1")
    plt.scatter(x.data.numpy(),y.data.numpy())
    plt.plot(x.data.numpy(),predict.data.numpy(),'r-')
    
    # 保存整个网络
    torch.save(net1,'net.pkl')

torch.save(net1, ‘net.pkl’) 这一行代码就是对整个网络模型的保存,这种方式将会提取整个神经网络, 网络大的时候可能会比较慢.

提取网络

def restore_net():
    net2 = torch.load('net.pkl')
    prediction = net2(x)
    
    plt.subplot(122)
    plt.title("net2")
    plt.scatter(x.data.numpy(),y.data.numpy())
    plt.plot(x.data.numpy(),prediction.data.numpy(),'r-')
    plt.show()

net2 = torch.load(‘net.pkl’) 就是对训练网络的提取

显示结果

调用上面建立的几个功能, 然后出图.

#保存net1(整个网络)
save()
#提取到整个网络
restore_net()

在这里插入图片描述
可以看出net1和net2的图一模一样

接下来,就是保存网络参数,然后根据网络重新构建网络

只保留网络中的参数

import torch
from torch.autograd import Variable
import matplotlib.pyplot as plt

#假数据
# unsqueeze对数据维度进行扩充
x = torch.unsqueeze(torch.linspace(-1,1,100),dim=1)
# print(x.size())
y = x.pow(2) + 0.2*torch.rand(x.size())
# print(y.shape)

def save():
    #建网络
    net1 = torch.nn.Sequential(
        torch.nn.Linear(1,10),
        torch.nn.ReLU(),
        torch.nn.Linear(10,1)
    )
    optimizer = torch.optim.SGD(net1.parameters(), lr=0.5)
    loss_func = torch.nn.MSELoss()
    
    #训练
    for t in range(100):
        predict = net1(x)
        loss = loss_func(predict,y)
        
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    
    plt.figure(1,figsize=(10,3))
    plt.subplot(121)
    plt.title("net1")
    plt.scatter(x.data.numpy(),y.data.numpy())
    plt.plot(x.data.numpy(),predict.data.numpy(),'r-')
    
    # 只保留网络中的参数(速度快,占内存少)
    torch.save(net1.state_dict(),'net_params.pkl')

torch.save(net1.state_dict(),‘net_params.pkl’)这一行代码就是只保留网络中的参数(速度快,占内存少)

只提取网络参数

这种方式将会提取所有的参数, 然后再放到你的新建网络中.

def restore_params():
    net3 = torch.nn.Sequential(
        torch.nn.Linear(1,10),
        torch.nn.ReLU(),
        torch.nn.Linear(10,1)
    )
    net3.load_state_dict(torch.load('net_params.pkl'))
    prediction = net3(x)
    
    plt.subplot(122)
    plt.title("net3")
    plt.scatter(x.data.numpy(),y.data.numpy())
    plt.plot(x.data.numpy(),prediction.data.numpy(),'r-')
    

这里就需要重新构建之前的网络,然后把保存的参数放进新的网络中

显示结果

#保存net1(只有参数)
save()
#提取网络参数, 复制到新网络
restore_params()

在这里插入图片描述
可以看出,net1和net3一模一样

  • 2
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: PyTorch 提供了许多预训练模型,如 AlexNet、VGG、ResNet、Inception 等,这些模型都在 ImageNet 数据集上进行了预训练。我们可以利用这些预训练模型提取像特征,以便用于像分类、目标检测等任务。 以下是一个示例代码,利用 ResNet-50 模型提取像特征: ```python import torch import torchvision.models as models import torchvision.transforms as transforms # 加载预训练模型 resnet = models.resnet50(pretrained=True) # 定义数据预处理 transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # 加载像 img = Image.open('test.jpg') # 预处理像 img_tensor = transform(img) # 增加一个维度,变成 4D 张量 img_tensor.unsqueeze_(0) # 特征提取 features = resnet(img_tensor) # 打印特征向量 print(features) ``` 其,我们首先加载了 ResNet-50 模型,并定义了一个数据预处理方法 `transform`,然后加载了一张测试片,并将其转化为 PyTorch Tensor 格式,并增加了一个维度,变成 4D 张量。最后,我们通过调用 `resnet` 模型提取特征,得到一个 1x1000 的张量,我们可以将其用于像分类等任务。 ### 回答2: PyTorch是一个功能强大的机器学习库,其包含许多用于预训练模型的特征提取工具。 预训练模型是在大规模数据集上进行训练保存模型,可以用来处理各种任务。PyTorch提供了许多经过预训练模型,如ResNet、Inception、VGG等,这些模型具有很强的特征提取能力。 使用PyTorch进行预训练模型的特征提取很简单。首先,我们需要下载和加载所需的预训练模型PyTorch提供了一种方便的方式,可以直接从网上下载预训练模型并加载到我们的程序。 加载预训练模型后,我们可以通过简单地将数据传递给该模型提取特征。这通常涉及将输入数据通过模型的前向传播过程,并从获取感兴趣的特定层或层的输出。 例如,如果我们想要提取像的特征,我们可以使用ResNet模型。我们可以将片传递给该模型,然后从所需的层获取输出。这些特征可以用来训练其他模型,进行像分类、目标检测等任务。 PyTorch的预训练模型特征提取功能很受欢迎,因为它不需要从头开始训练模型,而是利用了已经学习到的知识。这样可以节省时间和计算资源。此外,预训练模型通常在大规模数据集上进行了训练,因此其特征提取能力很强。 总而言之,PyTorch提供了简单且强大的预训练模型特征提取工具,可以用于各种任务。通过加载预训练模型提取其特征,我们可以快速构建和训练其他模型,从而提高模型性能。 ### 回答3: PyTorch 提供了许多预训练模型,它们通过在大规模数据集上进行训练,能够有效捕捉到像或文本等数据的特征。预训练模型特征提取是指利用这些模型提取输入数据的特征表示。 在 PyTorch ,我们可以使用 torchvision 包提供的预训练模型。这些模型包括常用的卷积神经网络(如 ResNet、VGG)和循环神经网络(如 LSTM、GRU)等,它们在 ImageNet 数据集上进行了大规模的训练。 为了使用预训练模型进行特征提取,我们可以简单地加载模型提取输入数据间层输出。这些间层的输出通常被认为是数据的有意义的特征表示。例如,对于像分类任务,我们可以加载预训练的 ResNet 模型,并通过前向传播得到像在最后一层卷积层的输出(也称为特征)。这些特征可以被视为像的高级特征表示,可以用于后续的任务,如像检索或分类等。 通过使用预训练模型进行特征提取,我们可以获得一些优势。首先,预训练模型经过大规模数据集的训练,能够捕捉到通用的特征表示。这样,我们无需从零开始训练模型,可以在少量的数据上进行微调或直接使用。其次,特征提取能够减少计算量和内存消耗,因为我们只需运行输入数据的前向传播,并截取间层的输出,而无需通过后向传播进行反向更新。 总之,PyTorch 提供了方便的接口和预训练模型,使得特征提取变得简单且高效。通过使用预训练模型,我们可以获得数据的有意义的特征表示,并在后续的任务得到更好的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值