MILtracking目标跟踪解析

MILtracking目标跟踪解析

三种概率

在传统的机器学习中,样本只有一个包标签。但是在MIL中,有样本与样本集合的概念,样本集合有包标签\(y_{bag}​\)(若集合含有正样本,包标签为1,否则0),故样本除了具有样本标签\(y_{sample}​\)还有包标签\(y_{bag}​\)。通过Noisy-OR模型可以由集合各元素的样本标签计算该集合的包标签:

\[p\left( y_{bag}=1\left|\right.X_{n}\right)=1-\prod_{n} \left(1-p\left(y_{bag}=1\left|\right. x_{i} \right ) \right )\]

其中\(X_{n}\)是含有n个样本的集合\(x_{i}\)是集合中的一个元素。

样本包标签后验概率推导

对于任意一个样本\(x\)\(p\left( y_{bag}=1\left|\right.x\right)\),我们可以通过naive bayes导出:
\[ \begin{split} p\left( y_{bag}=1\left|\right.x\right) &=\frac{p\left( x\left|\right. y_{bag}=1\right)p\left(y_{bag}=1 \right)}{p\left( x\left|\right. y_{bag}=0\right)p\left(y_{bag}=0 \right)+p\left( x\left|\right. y_{bag}=1\right)p\left(y_{bag}=1 \right)} \\ &=\frac{A}{B+A}=\frac{1}{{\frac{A}{B}}^{-1}+1}=\frac{1}{e^{-\ln\frac{A}{B}}+1}=\sigma\left( \ln\frac{A}{B}\right)\\ &=\sigma \left( \ln\frac{p\left( x\left|\right. y_{bag}=1\right)p\left(y_{bag}=1 \right)}{p\left( x\left|\right. y_{bag}=0\right)p\left(y_{bag}=0 \right)}\right)\\ \\ &又因为p\left(y_{bag}=1 \right)=p\left(y_{bag}=0 \right)\\ \\ &=\sigma \left( \ln\frac{p\left( x\left|\right. y_{bag}=1\right)}{p\left( x\left|\right. y_{bag}=0\right)}\right)\\ \\ &又因为服从naive bayes假设(观测样本维度独立) \\ &=\sigma \left( \ln\frac{\prod p\left( x_{i}\left|\right. y_{bag}=1\right)}{\prod p\left( x_{i}\left|\right. y_{bag}=0\right)}\right)=\sigma \left( \ln \prod \frac{ p\left( x_{i}\left|\right. y_{bag}=1\right)}{ p\left( x_{i}\left|\right. y_{bag}=0\right)}\right)\\ &=\sigma \left( \sum \ln\frac{ p\left( x_{i}\left|\right. y_{bag}=1\right)}{ p\left( x_{i}\left|\right. y_{bag}=0\right)}\right) \end{split} \]

弱分类器与强分类器

设弱分类器
\[ h_{i}= \ln\frac{ p\left( x_{i}\left|\right. y_{bag}=1\right)}{ p\left( x_{i}\left|\right. y_{bag}=0\right)} \]
\(h_{1},h_{2},...,h_{n}\)级联构成的强分类器为
\[ H_{n}=\sum \ln\frac{ p\left( x_{i}\left|\right. y_{bag}=1\right)}{ p\left( x_{i}\left|\right. y_{bag}=0\right)}=\sum h_{i} \]
在上一次跟踪结果附近某范围采样一个集合\(X_{near}\),远处采样一个集合\(X_{far}\).假设跟踪结果有漂移,但真实位置仍然落在\(X_{near}\),则\(X_{near}\)的包标签为1,\(X_{far}\)的包标签为0,即已知了包标签。进而可求取\(p\left( x_{i}\left|\right. y_{bag}=1\right)\)\(p\left( x_{i}\left|\right. y_{bag}=0\right)\)的分布

\[p\left( x_{i}\left|\right. y_{bag}=1\right) \sim N\left( \mu_{i}^{near},\sigma_{i}^{near}\right), p\left( x_{i}\left|\right. y_{bag}=0\right) \sim N\left( \mu_{i}^{far},\sigma_{i}^{far}\right)\]

转载于:https://www.cnblogs.com/huaxiaforming/p/7235797.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值