OpenCV基于字节指针进行高效像素遍历

直接获取Mat对象的像素块的数据指针,基于字节指针操作,实现快速像素遍历方法(1280x720, 彩色,仅需几毫秒完成)。Mat对象的数据组织形式与像素块数据的存储方式,Mat对象由两个部分组成,元数据头部加像素数据块部分。

代码实现如下:

void img_Byte_ptr(Mat &image) {
    double t1 = getTickCount();
    int w = image.cols;
    int h = image.rows;
    for (int row = 0; row < h; row++) {
        uchar* uc_pixel = image.data + row*image.step;
        for (int col = 0; col < w; col++) {
            uc_pixel[0] = 255 - uc_pixel[0];
            uc_pixel[1] = 255 - uc_pixel[1];
            uc_pixel[2] = 255 - uc_pixel[2];
            uc_pixel += 3;
        }
    }
    double t2 = getTickCount();
    double t = ((t2 - t1) / getTickFrequency()) * 1000;
    ostringstream ss;
    ss << "Execute time : " << std::fixed << std::setprecision(2) << t << " ms ";
    putText(image, ss.str(), Point(20, 20), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 0, 255), 2, 8);
    imshow("result", image);
}

在OpenCV C++中Mat对象的内存管理由OpenCV框架自动负责内存分配与回收,基于智能指针实现内存管理。

唯一正确的是直接使用data指针直接访问,但是这个在OpenCV官方的教程都没有明确说明。

转载于:https://www.cnblogs.com/jeshy/p/11118346.html

首次接触图像处理,通过次来记录自己的学习记录,以方便回忆。 //指针访问像素 void colorReduce(Mat& temImage, int div) { //行数 int rowNumber = temImage.rows; cout << "图像通道数:" << temImage.channels() << endl; //列数*通道数=每一行的元素个数 int colNumber = temImage.cols * temImage.channels(); for (int row = 0; row < rowNumber;row++) { uchar* data = temImage.ptr<uchar>(row); for (int col = 0; col < colNumber;col++) { data[col] = data[col] / div*div + div / 2; } } } //迭代器iterator操作像素 void iterColorReduce(Mat& temImage,int div) { Mat_<Vec3b>::iterator it = temImage.begin<Vec3b>(); Mat_<Vec3b>::iterator itend = temImage.end<Vec3b>(); //存取彩色图像的像素 while (it != itend) { //开始处理每个像素 (*it)[0] = (*it)[0] / div*div + div / 2; (*it)[1] = (*it)[1] / div*div + div / 2; (*it)[2] = (*it)[2] / div*div + div / 2; ++it; } } //动态地址计算像素 void atColorReduce(Mat& temImage, int div) { int rowNumber = temImage.rows; int colNumber = temImage.cols; //存取彩色图像 for (int row = 0; row < rowNumber; row++) { for (int col = 0; col < colNumber; col++) { //开始处理每个图像 //蓝色通道 temImage.at<Vec3b>(row, col)[0] = temImage.at<Vec3b>(row, col)[0] / div*div + div / 2; //绿色通道 temImage.at<Vec3b>(row, col)[1] = temImage.at<Vec3b>(row, col)[1] / div*div + div / 2; //红色通道 temImage.at<Vec3b>(row, col)[2] = temImage.at<Vec3b>(row, col)[2] / div*div + div / 2; } } }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值