midas Civil
midas Civil是桥梁领域通用结构分析及设计系统,它具有直观的操作界面,并且采用了尖端的计算机显示技术。midas Civil集成了静力分析、动力分析、几何非线性分析、屈曲分析、移动荷载分析、PSC桥分析、悬索桥分析、水化热分析等分析设计功能。
具体问题:
对于广大用户一直关心的如何在程序中模拟橡胶支座的刚度问题,下面给出详细的解释说明。
解决方法:
1) 普通板式橡胶支座介绍
图 1.1板式橡胶支座
①特点:性能优良、构造简单、价格低、无需维护、易更换、缓冲隔震、建筑高度低等特点。
②构造:由多层橡胶片与薄钢板硫化、粘合而成,它有足够的竖向钢度,能将上部构造的反力可靠的传递给墩台;有良好的弹性,以适应梁端的转动;又有较大的剪切变形能力,以满足上部构造的水平位移。
③活动机理:利用橡胶支座的不均匀弹性压缩实现转角,利用剪切变形实现水平位移。
④适用范围:
i.普通板式橡胶支座适用于跨度小于 30m、位移量较小的桥梁;正交桥梁用矩形支座;曲线桥、斜交桥及圆柱墩桥用圆形支座。
ii.四氟板式橡胶支座适用于大跨度、多跨连续、简支梁连续板等结构的大位移量桥梁。它还可用作连续梁顶推及 T 型梁横移中的滑块。矩形、圆形四氟板式橡胶支座的应用分别与矩形、圆形普通板式橡胶支座相同。
2)规范中的相关规定
①按结构型式分为:
i.普通板式橡胶支座分为矩形板式橡胶支座(代号 GJZ)、圆形板式橡胶支座(代号 GYZ);
ii.四氟滑板式橡胶支座分为矩形四氟滑板橡胶支座(代号 GJZF4)、圆形四氟滑板橡胶支座(代号 GYZF4)
②按支座材料和适用温度分为:
1)常温型橡胶支座应采用氯丁橡胶(CR)生产,适用温度为:-25°C ~ 60°C 。
2)耐寒型橡胶支座应采用天然橡胶(NR)生产,适用温度为:-40°C ~ 60°C 。
图 1.2 橡胶支座布置图
3) Civil 中的模拟方式
使用“边界条件”→“弹性连接”,模拟支座的 6 个刚度。(如图 1.3、1.4 所示)
以材料力学角度理解:
沿单元局部坐标系 x 轴方向刚度:SDx=EA/L
沿单元局部坐标系 y、z 轴方向刚度:SDy=SDz=GA/L
绕单元局部坐标系 x 轴方向转动刚度:SRx=GIp/L
绕单元局部坐标系 y、z 轴方向转动刚度:SRy=EIy/L、SRz=EIz/L,
(式中:E-弹性模量;G-切变模量;A-面积;L-支座高度(厚度);Iy、Iz-
截面抗弯惯性矩;Ip-截面抗扭惯性矩。)
注:由于在这里输入的各向刚度的单位是线刚度,所以在模拟支座顶、底两个节点的间距时,其间距值可以是实际的支座高度,也可以是为了模型查看方便,设置一个稍大些的值,都不影响分析结果。
图 1.3 弹性连接的定义
图 1.4 模型中的“弹性连接”
4) 结合规范(JT/T 4-2004)和(JTG D62-2004)举例说明支座刚度的计算方法
例:我们分别选取矩形支座和圆形支座来计算(实际设计时,支座的选取要根据支反力及 D62 规范来确定)
图 1.5 板式橡胶支座规格表
① SDx 的计算(即支座的抗压刚度计算)
图 1.6 规范中的相关计算公式
矩形支座:La×Lb-200×400/52:S=7.98
(注:S 在支座选用表中可直接查到,在此主要是说明计算过程,参见 D62,8.4.1)
支座剪变模量 Ge 的计算
本例按常温选取,Ge=1MPa(参见 D62,8.4.1)
(注:Ge 选取的值是根据试验得到,同时,试验规定 Ge 的测定是在平均压应力σc =10MPa作用下得到的,也就是说是在承压状态下得到的剪变模量,也就支座不存在刚度计算时,是否在承压状态下计算的刚度这个问题了。
支座抗压弹性模量 Ee 计算
圆形支座:Ee = 5.4Ge S2 = 5.4 × 1 × 7.52 = 303.75MPa
② SDy、SDz 的计算(即支座的剪切刚度计算)
材料力学的角度计算公式:SDy=SDz=GA/L,结合规范后的计算方式如下:
i.G 的计算(G=Ge=1MPa 参见 D62,8.4.1)
ii.A 的计算(A=kAe,计算见前页 Ae 计算,圆形 k=0.9,矩形 k=5/6,参见帮助文档-截面-剪切面积部分)
iii.L 的计算(L=te,计算过程略,参见 SDx 中的 te 计算)
综上,midas Civil 中弹性连接沿局部坐标 y、z 轴方向刚度 SDy=SDz
③ SRx 的计算(即支座的抗扭刚度计算)
材料力学的角度计算公式:SRx=GIp/L,结合规范后的计算方式如下:
i. Ip 的计算(支座截面的抗扭刚度)
抗扭刚度 Ip 是抵抗扭矩的刚度。它不同于为了计算扭矩作用下的截面剪应力所使用的极惯性矩。但是,当截面形状是圆形或厚板圆环时,其抗扭刚度与极惯性矩相同。
在 midas Civil 的帮助文件中,给出了常见截面 Ip 的计算公式,如图 1.7 所以: