概率论与数理统计笔记 第三章 二元随机变量及其分布

概率论与数理统计笔记 第三章 二元随机变量及其分布

概率论与数理统计笔记(计算机专业) 作者:catpub 新浪微博:@catpub

课程:中国大学MOOC浙江大学概率论与数理统计

部分平台可能无法显示公式,若公式显示不正常可以前往知乎或作业部落进行查看

点击前往知乎查看目录与导航

第16讲 二元随机变量,离散型随机变量分布律

  • 二元随机变量

    • 同一个样本空间的两个随机变量构成的向量
  • 离散型随机变量的分布律

    • $$P(X=x_i,Y=y_i)=p_y i,j=1,2,...$$

    • $x\text{\}y$$y_1$$y_2$$...$$y_1$$...$
      $x_1$$p_{11}$$p_{12}$$...$$p_{ij}$$...$
      $x_2$$p_{21}$$p_{22}$$...$$p_{2j}$$...$
      $...$$...$$...$$...$$...$$...$
      $x_i$$p_{i1}$$p_{i2}$$...$$p_{ij}$$...$
      $...$$...$$...$$...$
    • 实例:$P(X=0,Y=1)=P(Y=1|X=0)\cdot P(X=0)$

第17讲 二元离散型随机变量边际分布律与条件分布律

  • 边际分布律
    • $$P(X+x_i)=P(X=x_i,\bigcup_{j=1}^\infty(Y=y_i))=\sum_{j=1}^\infty p_{ij}=p_{i\cdot}$$
    • $$P(Y+y_i)=P_{\cdot y}$$
    • $x\text{\}y$$y_1$$y_2$$...$$y_1$$...$$P(X=x_i)$
      $x_1$$p_{11}$$p_{12}$$...$$p_{ij}$$...$$p_{1\cdot}$
      $x_2$$p_{21}$$p_{22}$$...$$p_{2j}$$...$$p_{2\cdot}$
      $...$$...$$...$$...$$...$$...$$...$
      $x_i$$p_{i1}$$p_{i2}$$...$$p_{ij}$$...$$p_{i\cdot}$
      $...$$...$$...$$...$$...$$...$$...$
      $P(Y=y_j)$$p_{\cdot 1}$$p_{\cdot 2}$$...$$p_{\cdot j}$$...$1
    • 已知条件分布律一定能求出边际分布律,但已知编辑分布律不一定能求出条件分布律
  • 条件分布律

    • $$P(X=x_i)|Y=y_j)=\frac{p_{ij}}{p_{\cdot j}} i=1,2,...​$$
    • 条件分布律不唯一

第18讲 二元随机变量分布函数、边际分布函数及条件分布函数

  • 联合分布函数
    • $$F(x,y)=P{(X\leq x)\cap(Y\leq y)}=P(X\leq x,Y\leq y)$$
  • 边际分布函数
    • $$F_x(x)=F(x,+\infty)=\lim_{y\to\infty}F(x,y)$$
  • 条件分布函数
    • 若 $P(Y=y)>0$
    • $$F_{X|Y}(x|y)=P(X\leq x|Y=y)=\frac{P(X\leq x,Y=y)}{P(Y=y)}$$
    • 对于连续型随机变量也可以用如上记法,但注意此时的 $y\leq Y\leq \epsilon$

第19讲 二元连续型随机变量的联合概率密度

  • 二元随机变量的联合概率密度
    • $$F(x,y)=\int_{-\infty}^x\int_{-\infty}^yf(u,v)dudv$$
    • 其中 $f(x,y)$ 为 $(X,Y)$ 的概率密度
  • 性质
    • $$P((x,y)\in D)=\iint_{D}f(x,y)dxdy$$
    • $$\frac{\partial^2F(x,y)}{\partial x\partial y}=f(x,y)$$
  • 提示
    • 此处应具有求二重积分的能力

第20讲 二元连续型随机变量的边际概率密度

  • 二元连续型随机变量的边际概率密度
    • $$f_x(x)=\int_{-\infty}^{+\infty}f(x,y)dy$$
  • 二元连续型随机变量的边际概率函数
    • $$F_x(x)=F(x,+\infty)=\int_{-\infty}^x[\int_{-\infty}^{+\infty}f(u,y)dy]du$$

第21讲 二元连续型随机变量的条件概率密度

  • 二元连续型随机变量的条件概率密度

    • $$f_{X|Y}(x|y)=\frac{f(x,y)}{f_Y(y)}$$
  • 变式

    • $$f(x,y)=f_{X|Y}(x|y)\cdot f_Y(y)$$
  • 汇总:二元离散型与连续型随机变量分布比较
    • 离散型
      • 联合分布律
      • 边际分布律
      • 条件分布律
    • 连续型
      • 联合概率密度
      • 边际概率密度
      • 条件概率密度

第22讲 二元均匀分布,二元正态分布

  • 二元均匀分布
    • $$f(x,y)=1/A,(x,y)\in D$$
  • 二元正态分布
    • $$\begin{align}&f(x,y)=\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}\times\ &exp{\frac{-1}{2(1-\rho^2)}[\frac{(x-\mu_1)^2}{\sigma_1^2}-2\rho\frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2}+\frac{(y-\mu_2)^2}{\sigma_2^2}]}\end{align}$$
    • $\sigma_1,\sigma_2>0$ ,$-1<\rho<1$
    • 记为 $(X,Y)\sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$
  • 二元正态分布的边际概率密度
    • $$X\sim N(\mu_1,\sigma_2^2)$$
    • 即边际概率分布服从正态分布
  • 二元正态分布的条件概率密度
    • $$Y|X\sim N(\mu_2+\rho\frac{\sigma_2}{\sigma_1}(x-\mu_1),(1-\rho^2)\sigma_2^2)$$
    • 即条件概率分布服从正态分布

第23讲 随机变量的独立性

  • 随机变量的独立性
    • $$F(x,y)=F_X(x)F_Y(y)$$
    • 离散型随机变量的独立性
      • $$P(X=x_i,Y=y_j)=P(X=x_i)P(Y=y_j)$$
    • 连续型随机变量的独立性
      • $$f(x,y)=f_X(x)f_Y(y)$$
  • $n$ 元随机变量的分布
    • 分布函数
    • 分布律
    • 概率密度函数
    • 边际分布
  • 向量的独立性
    • $$F(x_1,x_2,...,x_m,y_1,y_2,...,y_n)=F_1(x_1,x_2,...,x_m)F_2(y_1,y_2,...y_n)$$
    • 性质
      • 若两向量独立
        1. $X_i$ 与 $Y_j$ 相互独立
        2. 若 $g(x_1,x_2,...,x_m)$ 与 $h(y_1,y_2,...y_n)$ 是连续函数,则 $g(X_1,X_2,...,X_m)$ 与 $h(Y_1,Y_2,...Y_n)$ 相互独立
      • 直观理解
        • 性质1表明,若 $X_i$ 与 $Y_j$ 相互独立,则 $X_1$ 与 $Y_1$ 相互独立,$X_1$ 与 $X_2$ 相互独立
        • 性质2表明,若 $X_i$ 与 $Y_j$ 相互独立,则 $X_1+X_2$ 与 $Y_1\times Y_2$ 相互独立

          第24讲 二元随机变量函数的分布

  • 二元随机变量函数的分布(如 $Z=X<Y$ 的分布)
    • 离散型
      • 用分布律,分析各种情况
    • 连续型
      • 先求 $F(x)$,再求导得到

第25讲 $Z=X+Y$的分布

  • 连续型
    • $$F_z(z)=P(Z\leq z)=\iint_{x+y\leq z}f(x,y)dxdy$$
    • $$f_Z(z)=\int_{-\infty}^{+\infty}f(z-y,y)dy$$
    • 卷积公式
    • 关于正态分布的结论
      • 若 $X$ 与 $Y$ 相互独立, $X\sim N(\mu_1,\sigma_1^2),Y\sim N(\mu_2,\sigma_2^2)$,则
        • $$(Z=X+Y)\sim N(\mu_1+\mu_2,\sigma_1^2+\sigma_2^2)$$
      • 更一般的,若 $X_i$ 服从线性分布,则其线性组合
        • $c_0+c_1 X_1+c_2 X_2+...+c_n X_n\sim N(\mu,\sigma^2)​$
      • 其中
        • $$\mu=c_0+c_1\mu_1+...+c_n\mu_n, \sigma^2=c_1^2\sigma_1^2+c_2^2\sigma_2^2+...+c_n^2\sigma_n^2$$
    • $\Gamma$ 分布 Gamma Distribution (非重点,可略过)
  • 离散型
    • 若 $X_1,X_2,...,X_n$ 独立且服从 $B(1,p)$ 则
      • $$X_1+X_2+...+X_n\sim B(n,p)$$
    • 若 $X$ 与 $Y$ 相互独立,$X\sim B(n_1,p),Y\sim B(n_2,p)$ 则
      • $$X+Y\sim B(n_1+n_2,p)$$
    • 若 $X$ 与 $Y$ 相互独立,$X\sim \pi(\lambda_1),Y\sim \pi(\lambda_1+\lambda_2)$ 则
      • $$X+Y\sim \pi(\lambda_1+\lambda_2)$$

第26讲 $max (X,Y)$和$min (X,Y)$的分布

  • 若 $X$ 与 $Y$ 相互独立
    • $$\begin{split}F_{max}(z)&=P(M\leq z)\ &=P(X\leq z,Y\leq z)\ &=P(X\leq z)P(Y\leq z)\end{split}$$
    • $$f_{max}(z)=f_X(z)f_Y(z)$$
    • 同理
    • $$f_{min}(z)=1-(1-f_X(z))(1-f_Y(z))$$
  • $n$ 个相互独立的随机变量同理
  • 若 $X_n$ 相互独立且分布相同
    • $$f_{max}(z)=n[F(z)]^{n-1}f(z)$$
    • $$f_{min}(z)=n[1-F(z)]^{n-1}f(z)$$
  • 提示:该小节在第七章第二节“估计量的评价,无偏差性”中有重要应用

本章最后修订时间:2017.12.13 如有错误欢迎前往知乎指正

转载于:https://www.cnblogs.com/catpub/p/7988295.html

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值