《随机变量及其分布》_2021秋季《概率论与数理统计》复习笔记2.0_基于浙大第五版和华东师大版

说明

  • 主要基于浙大第五版
  • 并非详细教程笔记,仅作梳理用(教程性笔记可移步另一篇博客
  • 偏重概念理解和澄清误区

注意大小写字母的区分,例如 X X X(随机变量)和 x x x(实数或分布函数的自变量)、 P P P(概率)和 p p p(分布律)等,手写时需要自己能分清。

随机变量及其分布

随机变量的取值随试验结果而定,在试验之前不能预知它取什么值。

一个事件尽管在一次试验中发生的概率很小,但只要试验次数很多,且试验独立进行,那么这一事件的发生几乎是肯定的,所以绝不能轻视小概率事件。

分布函数

  • 对于非离散型随机变量,我们更关注随机变量的取值落在某个区间的概率 P { x 1 < X ≤ x 2 } P\{x_1<X\leq x_2\} P{x1<Xx2},而不是某个值的概率。由于
    P { x 1 < X ≤ x 2 } = P { X ≤ x 2 } − P { X ≤ x 1 } P\{x_1<X\leq x_2\}=P\{X\leq x_2\}-P\{X\leq x_1\} P{x1<Xx2}=P{Xx2}P{Xx1}
    我们为了研究 P { X ≤ x } P\{X\leq x\} P{Xx},引入分布函数的概念。

    (离散型随机变量同样可以使用分布函数)

  • 性质

    1. 不减
    2. 0 ≤ F ( x ) ≤ 1 , F ( − ∞ ) = 0 , F ( ∞ ) = 1 0\leq F(x)\leq 1,F(-\infin)=0,F(\infin)=1 0F(x)1,F()=0,F()=1
    3. 右连续

    具备这三条性质的函数必是某个随机变量的分布函数

  • 连续型随机变量的分布函数是连续函数

概率密度函数

基于3b1b,类似于微积分的理解

  • 性质

    1. f ( x ) ≥ 0 f(x)\geq 0 f(x)0
    2. ∫ − ∞ + ∞ f ( x ) d x = 1 \int_{-\infin}^{+\infin}f(x){\rm d}x=1 +f(x)dx=1
    3. P { x 1 < X ≤ x 2 } = ∫ x 1 x 2 f ( x ) d x P\{x_1<X\leq x_2\}=\int_{x_1}^{x_2}f(x){\rm d}x P{x1<Xx2}=x1x2f(x)dx
    4. f ( x ) f(x) f(x) x x x连续,则有 F ′ ( x ) = f ( x ) F'(x)=f(x) F(x)=f(x)

    f ( x ) f(x) f(x)具备性质 1 , 2 1,2 1,2,引入 G ( x ) = ∫ − ∞ x f ( t ) d t G(x)=\int_{-\infin}^xf(t){\rm d}t G(x)=xf(t)dt,则 G ( x ) G(x) G(x)是某一随机变量的分布函数, f ( x ) f(x) f(x)是该随机变量的概率密度

  • 在计算连续型随机变量落在某一区间的概率时,不必区分区间开闭。

  • 如何理解概率密度

    个人认为依然可以延续先前研究分布函数时提到的“关注随机变量的取值落在某个区间的概率”的思想,
    P { x 1 < X ≤ x 2 } = F ( x + Δ x ) − F ( x ) = f ( x ) Δ x P\{x_1<X\leq x_2\}=F(x+\Delta x)-F(x)=f(x)\Delta x P{x1<Xx2}=F(x+Δx)F(x)=f(x)Δx
    类似于线密度的定义,在一段很小的 Δ x \Delta x Δx内,取 f ( x ) = P { x 1 < X ≤ x 2 } Δ x f(x)=\frac{P\{x_1<X\leq x_2\}}{\Delta x} f(x)=ΔxP{x1<Xx2}作为小区间 ( x , x + Δ x ) (x,x+\Delta x) (x,x+Δx)上的概率密度。在将柱划分得更细的过程中,落在该区间中的概率越小,而这种概率上的变小可以通过基本维持 f ( x ) f(x) f(x)的高度、同时缩小 Δ x \Delta x Δx实现
    在这里插入图片描述
    在这里插入图片描述

    • f ( x ) f(x) f(x)并不代表 P ( X = x ) P(X=x) P(X=x)这一点的概率( P ( X = x ) = 0 P(X=x)=0 P(X=x)=0,因为线的面积是 0 0 0)。

      由于连续型随机变量的区间概率计算与离散型不同, P ( x ∈ D ) ≠ ∑ x ∈ D P ( x ) P(x\in D)\ne\sum_{x\in D} P(x) P(xD)=xDP(x),即 P ( x ∈ D ) P(x\in D) P(xD)本身就是基本的研究对象,所以“无限个 0 0 0相加等于 1 1 1”( ∀ x ∈ D , P ( X = x ) = 0 \forall x\in D,P(X=x)=0 xD,P(X=x)=0,然而 P ( X ∈ D ) = 1 P(X\in D)=1 P(XD)=1)的悖论,就被 P ( X ∈ D ) = S = ∑ S i P(X\in D)=S=\sum S_i P(XD)=S=Si这样面积的累加绕开了。

      更多相关内容可学习测度论勒贝格积分

  • “概率为 0 0 0的事件可能会发生”

    从理解的角度,概率密度函数和可能性的关系更大,而不是和概率。可以拿3b1b视频中的例子,P(H)精确等于0.7的概率为0,但可能性依然存在。

    于是,不可能事件 A A A的概率 P ( A ) = 0 P(A)=0 P(A)=0,但若 P ( A ) = 0 P(A)=0 P(A)=0 A A A不一定是不可能事件。

  • 对于概率密度函数是偶函数的情况,有
    F ( − a ) + F ( a ) = 1 F(-a)+F(a)=1 F(a)+F(a)=1
    从面积角度理解, F ( − a ) = ∫ − ∞ − a f ( x ) d x = ∫ a + ∞ f ( x ) d x F(-a)=\int_{-\infin}^{-a}f(x)dx=\int_a^{+\infin}f(x)dx F(a)=af(x)dx=a+f(x)dx,这块面积与 F ( a ) F(a) F(a)代表面积之和即为整个PDF覆盖的面积。

  • 随机变量 X X X的函数的分布

    函数 g ( x ) g(x) g(x)满足 ∀ x ∈ D , g ′ ( x ) > 0 ( 或 恒 < 0 ) \forall x\in D,g'(x)>0(或恒<0) xD,g(x)>0(<0),则 Y = g ( X ) Y=g(X) Y=g(X)是连续型随机变量,pdf为
    f Y ( y ) = { f X [ h ( y ) ] ∣ h ′ ( y ) ∣ , α < y < β 0 , 其 他 f_Y(y)= \begin{cases} f_X[h(y)]|h'(y)|,& \alpha<y<\beta \\ 0, & 其他 \end{cases} fY(y)={fX[h(y)]h(y),0,α<y<β
    h ( y ) h(y) h(y) g ( x ) g(x) g(x)的反函数, α β \alpha\beta αβ易得。

    • 关键在于将 F ( y ) F(y) F(y)转化为 P ( Y ≤ y ) P(Y\leq y) P(Yy),进而转化为 P ( g ( X ) ≤ y ) P(g(X)\leq y) P(g(X)y),变换得到 F ( X ) F(X) F(X),再将处理后的式子对 y y y进行求导
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值