概率论笔记 第4章 随机变量的数字特征

本文介绍了随机变量的数学期望,包括离散型和连续型随机变量的期望计算,以及随机变量函数的期望。同时讲解了随机变量的方差,定义及其性质,并给出了常见分布的期望和方差。
摘要由CSDN通过智能技术生成

推荐b站《概率论与数理统计》教学视频全集(宋浩)

第4章 随机变量的数字特征

4.1 随机变量的数学期望

随机变量的数学期望,也称为随机变量的平均值。数学期望刻画了随机变量取值的平均性质。

随机变量的方差刻画了随机变量取值的波动特性。

4.1.1 离散型随机变量的数学期望

定义 4.1 X X X 为离散型随机变量,其分布列为
P ( X = x i ) = p i , i = 1 , 2 , ⋯   , P(X=x_{i})=p_{i},\qquad i=1,2,\cdots, P(X=xi)=pi,i=1,2,,
若级数 ∑ i = 1 ∞ x i p i \sum_{i=1}^{\infty}x_{i}p_{i} i=1xipi 绝对收敛,则称其和为随机变量 X X X (或其分布)的数学期望,简称为期望均值,记为 E X EX EX ,即
E X = ∑ i = 1 ∞ x i p i . EX=\sum_{i=1}^{\infty}x_{i}p_{i}. EX=i=1xipi.
当级数 ∑ i = 1 ∞ x i p i \sum_{i=1}^{\infty}x_{i}p_{i} i=1xipi 非绝对收敛时,称随机变量 X X X (或其分布)的数学期望不存在。

4.1.2 连续型随机变量的数学期望

定义 4.2 设随机变量 X X X 的密度函数为 f ( x ) f(x) f(x) ,若积分 ∫ − ∞ + ∞ x f ( x ) d x \int_{-\infty}^{+\infty}xf(x)dx +xf(x)dx 绝对收敛,则称其值为 X X X (或其分布)的数学期望,简称为期望均值,记为 E X EX EX ,即
E X = ∫ − ∞ + ∞ x f ( x ) d x . EX=\int_{-\infty}^{+\infty}xf(x)dx. EX=+xf(x)dx.
(随机变量 乘 密度函数 求积分)

4.1.3 随机变量函数的数学期望

定理 4.1 Y = g ( X ) Y=g(X) Y=g(X),其中 X X X 为随机变量, g ( x ) g(x) g(x) 为连续函数.

(1) 设离散型随机变量 X X X 的分布列为 P ( X = x i ) = p i , i = 1 , 2 , ⋯ P(X=x_{i})=p_{i},\qquad i=1,2,\cdots P(X=xi)=pi,i=1,2, . 若级数 ∑ i = 1 ∞ g ( x i p i ) \sum_{i=1}^{\infty}g(x_{i}p_{i}) i=1g(xipi) 绝对收敛,则 Y = g ( X ) Y=g(X) Y=g(X) 的数学期望为
E Y = E [ g ( X ) ] = ∑ i = 1 ∞ g ( x i ) p i EY=E[g(X)]=\sum_{i=1}^{\infty}g(x_i)p_{i} EY=E[g(X)]=i=1g(xi)pi
(2) 若连续型随机变量 X X X 的密度函数为 f ( x ) f(x) f(x),且积分 ∫ − ∞ + ∞ g ( x ) f ( x ) d x \int_{-\infty}^{+\infty}g(x)f(x)dx +g(x)f(x)dx 绝对收敛,则 Y = g ( X ) Y=g(X) Y=g(X) 的数学期望为
E Y = E [ g ( X ) ] = ∑ i = 1 ∞ ∫ − ∞ + ∞ g ( x ) f ( x ) d x EY=E[g(X)]=\sum_{i=1}^{\infty}\int_{-\infty}^{+\infty}g(x)f(x)dx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值