待机、休眠、睡眠的区别和优缺点

本文详细介绍了Windows操作系统中的三种节能模式:待机、休眠及睡眠。睡眠模式综合了待机和休眠的优点,在保证快速恢复的同时,也避免了数据丢失的风险。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Windows操作系统中很早就加入了待机、休眠等模式,而Windows Vista中更是新加入了一种叫做睡眠的模式,可是很多人还是习惯在不使用电脑的时候将其彻底关闭。其实充分利用这些模式,我们不仅可以节约电力消耗,还可以用尽可能短的时间把系统恢复到正常工作状态。

080523_edu_readme_01.jpg

  这三种模式的定义如下:
待机(Standby)
  将系统切换到该模式后,除了内存,电脑其他设备的供电都将中断,只有内存依靠电力维持着其中的数据(因为内存是易失性的,只要断电,数据就没有了)。这样当希望恢复的时候,就可以直接恢复到待机前状态。这种模式并非完全不耗电,因此如果在待机状态下供电发生异常(例如停电),那么下一次就只能重新开机,所以待机前未保存的数据都会丢失。但这种模式的恢复速度是最快的,一般五秒之内就可以恢复。
休眠(Hibernate)
  将系统切换到该模式后,系统会自动将内存中的数据全部转存到硬盘上一个休眠文件中,然后切断对所有设备的供电。这样当恢复的时候,系统会从硬盘上将休眠文件的内容直接读入内存,并恢复到休眠之前的状态。这种模式完全不耗电,因此不怕休眠后供电异常,但代价是需要一块和物理内存一样大小的硬盘空间(好在现在的硬盘已经跨越TB级别了,大容量硬盘越来越便宜)。而这种模式的恢复速度较慢,取决于内存大小和硬盘速度,一般都要1分钟左右,甚至更久。
睡眠(Sleep)
  是Windows Vista中的新模式,这种模式结合了待机和休眠的所有优点。将系统切换到睡眠状态后,系统会将内存中的数据全部转存到硬盘上的休眠文件中(这一点类似休眠),然后关闭除了内存外所有设备的供电,让内存中的数据依然维持着(这一点类似待机)。这样,当我们想要恢复的时候,如果在睡眠过程中供电没有发生过异常,就可以直接从内存中的数据恢复(类似待机),速度很快;但如果睡眠过程中供电异常,内存中的数据已经丢失了,还可以从硬盘上恢复(类似休眠),只是速度会慢一点。不过无论如何,这种模式都不会导致数据丢失。

080523_edu_readme_02.jpg

  正因为睡眠功能有这么多优点,因此Windows Vista开始菜单上的电源按钮默认就会将系统切换到睡眠模式。所以我们大可充分利用这一新功能,毕竟从睡眠状态下恢复,速度要比从头启动快很多。而且睡眠模式也不是一直进行下去的,如果系统进入睡眠模式一段时间后(具体时间可以设定)没有被唤醒,那么还会自动被转入休眠状态,并关闭对内存的供电,进一步节约能耗。

转载于:https://www.cnblogs.com/chinhr/archive/2009/04/23/1442046.html

### 使用 LLaMA-FactoryLLaMA3.1 模型进行微调 为了使用 LLaMA-FactoryLLaMA3.1 进行微调,需遵循一系列配置命令来设置环境并启动训练过程。 #### 设置 GPU 环境 确保已安装适合的 CUDA 版本以及 PyTorch 的 GPU 支持版本。这可以通过访问 PyTorch 官网获取相应指令完成安装[^3]: ```bash conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia ``` #### 验证安装 在确认所有依赖项正确无误之后,在 LLaMA-Factory 路径下调用以下命令以检验安装情况: ```bash llamafactory-cli version llamafactory-cli train -h ``` #### 准备数据集与模板文件 对于特定应用领域或任务的数据准备至关重要。假设已经准备好用于微调的数据集,并将其放置于 `data` 文件夹内。另外,还需编辑身份信息以便更好地适配自定义需求[^5]: ```python import json %cd /content/LLaMA-Factory/ NAME = "Gavin大咖打造Llama3人工智能助手" AUTHOR = "LLaMA Factory" with open("data/identity.json", "r", encoding="utf-8") as f: dataset = json.load(f) for sample in dataset: sample["output"] = sample["output"].replace("NAME", NAME).replace("AUTHOR", AUTHOR) with open("data/identity.json", "w", encoding="utf-8") as f: json.dump(dataset, f, indent=2, ensure_ascii=False) ``` #### 启动 Web UI 或者直接运行微调脚本 有两种方式来进行实际的微调操作:通过图形界面 (WebUI) 或者命令行工具执行。这里提供两种方法的选择依据个人偏好而定。 ##### 方法一:利用 WebUI 方便调试 开启 WebUI 前先设定好使用的模型仓库为 ModelScope[^2]: ```bash export USE_MODELSCOPE_HUB=1 && llamafactory-cli webui ``` ##### 方法二:直接调用 CLI 工具快速上手 此法适用于熟悉命令行操作的用户群体,只需指定必要的参数即可开始训练进程[^1]: ```bash CUDA_VISIBLE_DEVICES=1 \ llamafactory-cli webchat \ --model_name_or_path [your path]/llm/Meta-Llama-3.1-8B-Instruct/ \ --adapter_name_or_path [your path]/llm/LLaMA-Factory/saves/Llama-3.1-8B/lora/sft-3/ \ --template llama3 \ --finetuning_type lora ``` 请注意替换 `[your path]` 为具体的本地存储位置。 #### 参数调整建议 由于不同应用场景下的最优超参可能有所差异,因此推荐根据具体情况进行适当调节。虽然不存在绝对标准的最佳实践指南,但可以根据以往经验总结出一些较为合理的区间范围作为参考起点[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值