欧几里德投影(Euclidean projection)

欧几里得投影是指将一点投影到一个集合上,使得投影点与原始点之间的距离最小。当集合为凸集时,存在唯一解。例如,将点投影到超平面上,可以转换为线性约束的最小二乘问题。凸集包括子空间和仿射集,它们包含通过任意两点的完整直线。文章还展示了凸集和非凸集的示例,以及介绍了凸锥的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Euclidean projection on a set

An Euclidean projection of a point x_0 in mathbf{R}^n on a set mathbf{S} subseteq mathbf{R}^n is a point that achieves the smallest Euclidean distance from x_0 to the set. That is, it is any solution to the optimization problem

min_x : |x-x_0|_2 ~:~ x in mathbf{S}.

When the set mathbf{S} is convex, there is a unique solution to the above problem. In particular, the projection on an affine subspace is unique.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值