最优化理论与方法-第二讲-凸集

原文视频:https://www.bilibili.com/video/BV1rE411H7P6

 

凸集

举例:

(1)min\:f(x),s.t.\:x\in[a,b)

(2)min\: x_1^2+x_2^2\;s.t.x\in S

其中x^*为最优点,此时对于凸集S来说,x^*负梯度方向x^*到 S内的所有点的方向 所呈夹角必定大于90度

即:-\bigtriangledown f(x^*)^T(x-x^*)\leq0,\:\forall x\in S

 

基本定义

凸集(convex set ):

  对于任意的x,y\inC与任意的\lambda \in [0,1]

                             \lambda x+(1-\lambda)y\in C

凸组合(convex combination):

           \lambda_1 x^1+\cdots +\lambda_k x^k

  其中,\lambda_1,\cdots,\lambda_k \geq0,\sum_{i=1}^{k}\lambda_i=1

补充:

线性组合:\lambda_1 x_1+\cdots +\lambda_k x_k

放射组合:\lambda_1 +\cdots+\lambda_k=1

 

凸包(convex hull of set C):

    由C中点的凸组合构成(将非凸集凸化)

 

常见凸集

  • 超平面 hyperplane:H=\left\{ x|a^Tx =b \right\}(a\neq 0);

  • 半空间 halfspace:\\ H^+=\{ x|a^Tx \geq b\}(a\neq 0);\\ H^-=\{ x|a^Tx \leq b\}(a\neq 0);

  • 多面体polyhedra:多个线性不等式所刻画的集合:\{ x|a^T_ix\leq b_i,i=1,\cdots,m\}

注:线性等式刻画的集合也是多面体!(可以将等式,转换为两个不等式)

  • 球体:(Euclidean)ball with center x_c and radius r;

B(x_c,r)=\{x| \| x-x_c \|_2 \leq r \} = \{ x_c + ru| \|u\|_2 \leq 1\}

  • 椭球(Ellipsoid):

\{x| (x-x_c)^T P^ {-1} (x-x_c)\leq 1 \} ; 其中 P为正定矩阵; 椭球的轴长为\sqrt{\lambda_i}

  • 二阶锥 :Second-order cone, ice-cream cone:

 \{ (x,t)| \|x\|_2\leq t\}

  • 半定矩阵锥:

  1. S^n:所有n阶对称矩阵组成的集合;
  2. S^n_+ = \{ X\in S^n|X\succeq 0\}:所有半正定矩阵组成的集合,其中:X\succeq0 \Leftrightarrow z^TXz \geq 0,\forall z
  3. S^n_++ = \{ X\in S^n|X\succeq 0\}:所有正定矩阵的集合

线性规划min\{ c^Tx|Ax=b,x\geq 0\}的最优解组成的集合为S,S是凸集合么?

\\\forall x_1,x_2 \in S\\ c^Tx_1=c^Tx_2=v^*\\ \forall \lambda \in[0,1], \lambda x_1+(1-\lambda) x_2\\ c^T(\lambda x_1+(1-\lambda) x_2)\\ =\lambda c^Tx_1+(1-\lambda) c^Tx_2\\ =v^*

 

能够保持凸性的运算

  • C_1,C_2\subset R^n是凸集,a\in R

(1)C_1 \cap C_2 = \{ x|x\in C_1, x\in C_2 \}是凸集

(2)C_1 \pm C_2 = \{ x\pm y|x\in C_1, y\in C_2 \}是凸集

问题:S = \{x\in R^n | |p(t)|\leq1,|t|\leq \pi/3 \},其中

                     p(t)= \sum^n_{i=1}x_i cosit        是否为凸集?

-1\leq x_1cost +x_2cos2t+\cdots + x_n cosnt\leq 1      取交集

 

放射变换

假设f: R^n \rightarrow R^m是仿射函数,即f(x)=Ax+b,A\in R^{m\times n},b \in R^m

  • C为凸集\Rightarrow f(C)=\{ f(x)| x \in C\}凸集
  • C为凸集\Rightarrow f^{-1}(C)=\{ x| f(x) \in C\}凸集

特殊仿射变换

  • 放缩scaling:: \alpha C=\{\alpha x| x\in C\}
  • 平移translation:x_0+C =\{x_0+x|x\in C\}
  • 投影projection:\{x^1| \binom{x^1}{x^2} \in C\}

 

凸集基本性质:投影定理

C\subset R^n是一个非空闭凸集,y\in R^ny \notin C,则:

(1)存在唯一的一点\bar{x}\in C,使得\bar {x}是y到C的距离最小的点,即有

                 \| \bar{x}-y\| = inf\{ \|x-y\| |x\in C \} >0

(2)\bar {x}是y到C的最小距离点充要条件是:

            (x-\bar{x})^T (x-\bar{x})\geq 0,\forall x\in C

投影定理的证明:

不妨设,\bar{x},x'都是投影点,则:\|y-\bar{x}\| = \|y-x'\|

存在\tilde{x},在\bar{x},x'两点之间,并作为连接三角形的中垂线,而小于其他两条边,从而小于投影点距离,矛盾!

因此投影点是唯一的

 

点与凸集的分离

  • C_1,C_2是两个非空凸集,若非零\alpha \in R^n和b使得

            \alpha^Tx \geq b, \forall x\in C_1,\alpha^Tz \geq b, \forall z \in C_2

        则称超平面H=\{ x| \alpha^T x=b\}分离集合C_1,C_2

 

支撑超平面定理

C\in R^n是非空凸集,\bar{x}\in \partial C则存在非零向量\alpha \in R^n使得

     \alpha ^T x \leq \alpha^T \bar{x}, \forall x\in clC

此时,也称超平面  H=\{ x\in R^n| \alpha^Tx = \alpha^T \bar{x} \}是集合C在\bar{x}处的支撑超平面

证明:

\partial C:集合C的边界点,  intC: 集合C包含的所有内点,   clC:c的内点和边界点(集合C的闭包)

已知\bar{x}\in \partial C,要证\exists \alpha \neq 0,使得\alpha ^T x \leq \alpha^T \bar{x}, \forall x\in clC

证:

由于\bar{x}\in \partial C,则x_k \rightarrow \bar{x}(点列,收敛到\bar{x}),且x_k \notin clc,

\because x_k \notin clc,\\

则存在\alpha_k(\neq 0)(边界点法向量),使得:

             \alpha_k^Tx \leq \alpha_k^T x_k,\forall x \in clc     (*)

不妨设,\|\alpha_k\|=1,则{\alpha_k}

(*)中令k \rightarrow \infty,得     \alpha^T x\leq \alpha^T \bar{x},\forall x\in clc

 

 

  • 5
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
最优化理论方法袁亚湘pdf》是袁亚湘所著的一本关于最优化理论方法的教材,本书共分为六章,分别介绍了最优化问题的基本概念、最优化理论的数学基础、无约束极值问题、约束极值问题、对偶问题及非线性规划等内容。 首先,本书介绍了最优化问题的定义、基本概念和数学描述,旨在帮助读者了解最优化问题的本质和相关的数学知识。其次,本书详细介绍了最优化理论的数学基础,包括凸集、凸函数、KKT条件等内容,这些基本理论为后续章节的学习和应用提供了前提。 然后,本书重点解了无约束极值问题和约束极值问题的求解方法。对于无约束极值问题,介绍了梯度下降法、共轭梯度法等常用的优化算法;对于约束极值问题,介绍了等式约束问题和不等式约束问题的拉格朗日函数和KKT条件等相关内容。 此外,本书还涉及到对偶问题的理论和求解方法,以及非线性规划问题的求解。这些内容为读者提供了更广阔的应用领域和方法选择。 总的来说,袁亚湘的《最优化理论方法》通过系统的介绍和解,使读者能够了解最优化问题的基本概念、数学理论及其实际应用,并为读者提供了一些常用的优化方法和技巧。无论是作为学习教材,还是作为参考书,本书对于研究最优化理论方法的读者来说都是一本不可多得的资料。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值