linux raid member,文件挂载时报错“linux_raid_member”

重装了一台系统,分区格式化后挂载一个磁盘出错[root@CM-MM-sve-111~]#mount/dev/sdh1/mntmount:unknownfilesystemtypelinux_raid_member分析:之前这台电脑配置

重装了一台系统,分区格式化后挂载一个磁盘出错

[root@CM-MM-sve-111 ~]# mount /dev/sdh1 /mnt

mount: unknown filesystem type 'linux_raid_member'

分析:之前这台电脑配置过软件raid才导致了现在的情况,

查看raid的情况

[root@CM-MM-sve-111 ~]# cat /proc/mdstat

Personalities : [raid6] [raid5] [raid4]

md127 : inactive sdh1[3](S)

1953511936 blocks

unused devices:

确实是sdh这块盘无法挂载,

删除这个raid

[root@CM-MM-sve-111 ~]# mdadm -S /dev/md127

mdadm: stopped /dev/md127

再次查看

[root@CM-MM-sve-111 ~]#  cat /proc/mdstat

Personalities : [raid6] [raid5] [raid4]

unused devices:

已经没有raid磁盘了,,

下面再把对应的磁盘格式化后再进行挂载。

测试挂载

[root@CM-MM-sve-111 ~]# mount /dev/sdh1 /data

OK

本文出自 “红公鸡” 博客,请务必保留此出处

### 回答1: DeepWalk是一种用于计算机形学习的开源Python库,可以使用有向或无向来学习嵌入式。它可以用于社会网络分析,单词嵌入,像检索和其他相关任务。 使用DeepWalk可以通过以下步骤来学习嵌入: 1. 准备数据:首先需要将转换为DeepWalk可以处理的形式。 2. 实例化DeepWalk模型:使用DeepWalk库中的模型类实例化DeepWalk模型。 3. 训练模型:使用fit方法训练DeepWalk模型。 4. 使用模型:训练后,可以使用模型来预测中节点的嵌入向量或执行其他相关任务。 例如,下面是一个使用DeepWalk训练嵌入的简单例子: ``` from deepwalk import DeepWalk # 实例化DeepWalk模型 model = DeepWalk() # 训练模型 model.fit(graph) # 使用模型 embedding = model.get_embedding() ``` 希望这些信息对你有帮助。如果你有更多的问题,可以再提出来。 ### 回答2: DeepWalk是一种基于网络结构的节点嵌入方法,用于提取节点的连续表示。它可以在Python中通过deepwalk库来实现。 DeepWalk通过随机游走的方式生成节点序列,并利用Skip-gram模型学习节点的向量表示。它的主要用途有以下几个方面: 1. 节点分类:将DeepWalk生成的节点向量输入到分类算法中,用于节点分类任务。例如,可以将节点向量输入到逻辑回归或支持向量机中进行分类。 2. 链接预测:利用DeepWalk生成的节点向量,可以用于预测节点之间的连接关系。例如,可以根据节点向量的相似性来预测两个节点是否存在边。 3. 社区发现:DeepWalk可以用于挖掘网络中的社区结构。通过将节点向量输入到聚类算法中,可以将节点划分为不同的社区。 4. 推荐系统:利用DeepWalk生成的节点向量,可以为用户推荐感兴趣的节点。例如,可以基于用户的历史行为和节点向量的相似性来进行推荐。 使用DeepWalk库可以按照以下步骤进行: 1. 导入deepwalk库:首先需要将deepwalk库导入到Python中,可以使用命令"import deepwalk"。 2. 构建网络:根据问题的需求,需要构建一个网络,表示节点之间的连接关系。可以使用网络库(如networkx)加载或创建。 3. 训练DeepWalk模型:使用deepwalk库提供的函数,生成节点序列并训练模型。可以指定游走的长度、游走的次数等参数。例如,可以使用命令"model = deepwalk.DeepWalk(graph)"来创建DeepWalk模型,并使用命令"model.train()"来训练模型。 4. 提取节点向量:使用训练好的DeepWalk模型,可以提取节点的向量表示。可以使用命令"model.get_embeddings()"来获取节点的向量表示。 5. 根据具体应用场景,使用节点向量进行节点分类、链接预测等任务。 总之,DeepWalk库提供了一种简单而有效的方法来学习节点的连续表示,并且可以应用于多种网络分析任务。 ### 回答3: DeepWalk是一种用于学习嵌入的Python库。它可以将中的节点映射到一个低维向量空间中,以便进行机器学习、数据挖掘和分析等任务。 DeepWalk使用随机游走的方法从中生成虚拟节点序列,然后利用Word2Vec模型对这些序列进行嵌入学习。最终,DeepWalk可以得到每个节点的向量表示。 使用DeepWalk主要包括以下几个步骤: 1. 构建:首先,需要使用网络数据的表示形式(如邻接矩阵、边列表等)构建。 2. 进行随机游走:DeepWalk通过在中进行随机游走来生成节点序列。可以指定游走的长度、次数和起始节点等参数。 3. 学习嵌入向量:利用Word2Vec模型对生成的节点序列进行学习,得到节点的嵌入向量。可以设置嵌入向量的维度、窗口大小等参数。 4. 应用嵌入向量:将得到的节点向量应用于具体的任务中,如节点分类、链路预测、社区发现等。 DeepWalk的主要优点是可以适用于大规模的数据,并且能够捕捉节点之间的语义关系。它广泛应用于推荐系统、社交网络分析、生物信息学等领域。 使用DeepWalk库可以方便地实现上述步骤,可以通过导入库、调用相应函数和设置参数来使用。具体的使用方法可以参考DeepWalk的文档和示例代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值